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Central to mathematical generalization is the development of structural thinking. By examining the 
relationship between structural thinking and mathematical generalization, this study found that 
learners’ attention to different elements of a problem can result in different mathematical 
generalizations and structural generalization occurs only when learners reason based on identified 
properties. These findings imply that learners should be cultivated to attend to mathematical 
structures and to generalize beyond numerical patterns.  
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Generalizing involves transportation of a mathematical relation from a given set to a new set for 
which the original set is a subset, perhaps adjusting the relation to accommodate the larger set. It has 
been argued that generalizing should be at the heart of mathematics activity in school (e.g., Mason, 
Johnston-Wilder, &Graham, 2005). Within the past a few decades researchers have differentiated 
different forms of mathematical generalizations (Dörfler, 1991; Yerushalmy,1993; Mason, Burton, & 
Stacey, 2010), among which are empirical and structural generalizations. Empirical generalization is 
the process of forming a conjecture about what might be true from numerous instances. It occurs 
when a learner looks at several, sometimes many, cases or instances and identifies the sameness 
among these cases as a general property. Structural generalization arises when a learner recognizes a 
relationship from one or very few cases by attending to the underlying structure within these cases 
and perceives this relationship as a general property. The distinction implies the need for learners to 
move from empirical to structural generalization. Central to this advancement is the development of 
structure thinking, which can be defined as a disposition to use, explicate, and connect mathematical 
properties in one’s mathematical thinking (Mason, Stephens, & Watson, 2009). However, most 
studies on generalizing were conducted in the context of pattern recognition. More importantly, by 
providing the first few terms of a pattern, the tasks used in these studies tend to promote 
generalization that does not necessarily demand structural thinking (Küchemann, 2010). To extend 
the study of mathematical generalization beyond the context of pattern recognition and to bring 
structure thinking to the forefront of the development of mathematical generalization, this study 
aimed to examine the relationship between structure thinking and mathematical generalization in a 
dynamic geometry environment (DGE). It was guided by one research question: How does learners’ 
structure thinking evolve and influence their generalizing activity when working on a carefully 
designed sequence of tasks in DGE? 

Theoretical Framework 
Mason et al. (2009) described mathematical structure as the identification of general properties that 

are instantiated in a particular situation as relationships between elements and differentiated five 
states of learner’s attention to mathematical structure. Holding wholes involves a certain way of 
looking at a whole situation that produces a global image that will undergo further analysis. In this 
awareness state, a learner attends to an object as a whole without explicit regard to its components. 
Discerning details shift the learner's attention toward further analysis and deep description, in which 
parts begin to be discerned and described in detail based on what the learner finds meaningful to 
inspect. The attention can focus on parts that either change or remain invariant. Recognizing 
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relationships occurs when changing or invariant relationships are detected and analyzed critically. In 
this awareness state, the learner attends to relationships between parts or between part and whole. 
Perceiving properties occurs when the learner perceives the discerned relationships as instantiations 
of general properties which can apply in many different situations. It involves the transition from 
seeing something in its particularity to seeing it as representative of a general class. This state enables 
a further categorization of different (classes of) objects. The separation of stages three and four 
indicates a subtle but vital difference between recognizing relationships in particular situations and 
perceiving relationships as instantiations of general properties which can apply in many different 
situations. Reasoning on the basis of the identified properties is the critical phase in which inductive 
and abductive reasoning about specific objects transforms into deductive reasoning by examining 
what other objects may belong to the perceived structure. In this awareness state, the learner attends 
to properties as abstracted from and independent of any particular objects and forms axioms from 
which deductions can be made. This model provides a useful tool to examine the development of 
structural thinking.  

Methodology 
The data for this study was collected from a series of task-based interviews that were a part of a 

larger research project aimed to investigate preservice secondary mathematics teachers as learners 
and teachers of mathematical generalizations in a technology-intensive learning environment. The 
task-based interview was chosen to gain knowledge about individual preservice teacher's processes to 
generalize mathematical ideas and the mathematical knowledge resulting from it. Each task in this 
study consisted of a sequence of closely related problems that aimed to promote learners to 
generalize a mathematical idea to a broader domain. These tasks were design to engage learners in 
not only empirical but also structural generalizations.  

The participants were 8 undergraduate preservice secondary mathematics teachers enrolled in a 
course that focused on teaching mathematics with various types of mathematical action technologies. 
The course took a problem-solving approach and engaged the preservice teachers in the processes of 
representing, conjecturing, generalizing, and justifying by solving and extending mathematically rich 
problems in technology-rich learning environments. Outside the class each participant participated in 
four task-based interviews, each of which was about 2 hours. During each interview, a participant 
would solve one or two mathematical tasks with the technologies they had learned in class. 
Participants’ interactions with technology were screen-recorded. During each session, the interviewer 
frequently asked the participant to articulate his/her thinking process and to make general statement 
based on his exploration. Those interactions between the interviewer and the participant were 
recorded with a camera. 

Data analysis consisted of three stages. First, the generalizations a participant constructed while 
solving each mathematical task were identified and categorized into empirical and theoretical 
generalizations. A generalization was coded as empirical if it was constructed on the basis of 
perception or numerical pattern by comparing numerous instances; it was coded as structural if it was 
constructed based on the generality of the inferred ideas, methods, or processes. Second, Mason et al. 
(2009)’s model was used to analyzed a participant's evolution of the state of attention to 
mathematical structure when constructing each mathematical generalization. The final stage involved 
coordinating the analysis in the first two stages to look for patterns about the evolution of structural 
thinking and the development of generalization.  

Results and Discussion 
Results from data analysis indicated a close relationship between the state of attention to 

mathematical structure and the forms of mathematical generalization that can potentially emerge. 
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More specifically, the study found that (1) learners’ attention to different elements of a problem can 
result in different mathematical generalizations and (2) structural generalization occurs only when 
learners can reason on the basis of identified properties. I will use participants’ work on task to 
illustrate the findings from this study. In the task, participants were asked to decide the conditions 
under which the area of the square created from the largest side of a triangle is equal to the sum of 
the areas of the squares created from the other two sides of the triangle (Part 1) and to further extend 
this relationship to quadrilateral (Part 2) and other polygons (Part 3). 

When solving Part 1 of the task, Although Joe quickly connected it with the Pythagorean theorem, 
he focused his attention on the relationship of square from a right leg and the square from the 
hypotenuse, conjectured that the areas of the two squares grew proportionally and the vertex 𝐴 shared 
by the two squares moved along a line, and then validated his conjecture by perception and 
measurement (Figure 1a). When solving Part 2 of the task, Joe made one interior angle of the 
quadrilateral a right angle by dragging and then dragged the vertex opposite to the right angle such 
that the area of the largest square was equal to the sum of the areas of the other three squares. After 
creating multiple instances of the desired diagram through dragging, informed by his knowledge 
gained from earlier exploration, he conjectured that the vertex 𝐷 opposite to the right interior angle 
moved along a line and the areas of the two squares that share the vertex 𝐴 grew proportionally 
(Figure 1b). Here, Joe attended to the relationship between the areas of the two squares and 
generalized this relationship from triangle to quadrilateral. 

 

 c.  
Figure 1: Snapshots of participants’ work 

 
In contrast, when exploring Part 2 of the task, Jen considered a right isosceles trapezoid, made two 

right triangles inside the trapezoid, and labeled the shorter base as 𝑥, the longer base as 𝑥 + 𝑎, and a 
lateral side as 𝑦 (see Figure 1c). By using the fact that the area of the largest square should be equal 
to the sum of the areas of the three squares and the Pythagorean theorem, she created an equation 
𝑥! + 𝑦! + 𝑦! + 𝑎! = (𝑥 + 𝑎)! and concluded that 𝑦 = 𝑎𝑥 after symbolic manipulations. When asked 
how to further extend the relationship to other polygons, Jen drew a pentagon with three right interior 
angles as shown in Figure 3 and labeled 𝑥, 𝑦, 𝑥 + 𝑎, 𝑦 + 𝑏 as the length of its four sides. By using the 
fact that the area of the largest square should be equal to the sum of the areas of the four squares and 
the Pythagorean theorem, he created an equation 𝑥! + 2𝑎𝑥 + 𝑎! = (𝑦 + 𝑏)! + 𝑥! + ( 𝑎! + 𝑏!)! + 𝑦! and 
concluded that 𝑥 = !!!!!!!"

!
 after symbolic manipulation. Moreover, Jen noticed that there was one 

right angle in the case of triangle, two right angles in the quadrilateral, three right angles in the 
pentagon and concluded that there would be 𝑛 − 2 right angles by extending the perceived numerical 
pattern. Here, Jen attended to the desired symbolic relationship between the sides of a polygon and 
the algebraic identity expressed in the Pythagorean theorem to search for a class of polygons that 
would satisfy the problem condition. What was generalized was a symbolic relationship rather than 
the underlying structure expressed in the Pythagorean theorem.  
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Different from both Joe and Jen, Jack made generalizations by attending the underlying structure of 
the Pythagorean theorem. The following excerpt shows his generalization of the Pythagorean 
theorem when solving Part 2 and Part 3 of the problem. 

Interviewer: Now let’s think a little bit of what we have done here. What if it is a nonagon, decagon, 
or an n-sided polygon, how can you create the polygon such that the area of the largest area is 
equal to the sum of the areas of the other squares drawing from each side of the polygon?  

Jack: From one of the vertices of the octagon, the vertex on the largest square, I need the side of each 
square and the line connecting 𝐴 to each vertex of the nonagon or the n-gon to form a 90-degree 
angle. So, you need to make 𝑛 − 2 right angles because the only ones that aren’t are the two 
vertices from the largest square. 

The above excerpt provides evidence that Jack extended the Pythagorean theorem to any polygon 
and generalized that the area of the largest square is equal to the sum of the areas of the n-1 squares 
created from each side of an n-sided polygon when the polygon is created by sequentially drawing n-
2 right angles from a vertex of the polygon to the sides of the polygon.  

This study found a close relationship between the elements that the participants attended to and the 
possible mathematical generalizations they might develop. As shown in the above examples, when 
solving the task, Joe focused on the covariation of the areas of the two squares, Jen attended to the 
algebraic identity expressed in the Pythagorean theorem, and Jack focused on the structure 
underlying the Pythagorean theorem. As a result, Joe generalized the proportionality of the areas of 
the two squares from triangle to quadrilateral, Jen applied the algebraic identity to deduce algebraic 
equations that specify a given set of quadrilaterals and pentagons that satisfy the problem condition, 
and Jack extended Pythagorean theorem and used it to decide the particular shape of an n-sided 
polygon that satisfies the problem condition. One productive way of helping learners to identify 
mathematical useful relations is to engage them to examine the generalizability of the perceived 
mathematics relations and the structures behind them. 

Pattern generalization is a typical generalization activity in school mathematics, in which a 
figurative, numerical, or tabular pattern is usually presented in the form a systematic sequence of 
elements, and learners are expected to generate a systematic set of ordered pairs from which an 
empirical relationship can be induced. This approach allows learners to identify and express a 
numerical relationship without necessarily seeing the mathematical structure that produces it. This 
study found that although the inductive nature of the dynamic geometry environment made it 
relatively easy for the participants to observe, conjecture, validate, and generalize mathematical 
relations based on perception and numerical patterns, identifying structure underlying these relations 
and generalizing them to broader contexts proved to be challenging. For instance, when solving the 
above task, the participants produced various generalizations relying on measurement and dragging, 
but only two of them were able to generalize the Pythagorean theorem from triangle to other 
polygons. A similar result was found in other tasks given to the participants. Therefore, engagement 
in pattern generalization does not necessarily support learners’ development of structural thinking. 
One plausible reason that many participants in this study were not able to generalize on the basis of 
mathematics structure is that they were not provided sufficient opportunities to engage in this way of 
thinking in their own mathematics learning experience. In order to develop learners’ ability to make 
structural generalization, they should be provided opportunities to initiate into structural thinking.  
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