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The sampling distribution (SD) is a foundational concept in statistics, and simulations of repeated 
sampling can be helpful to understanding them. However, it is possible for simulations to be 
misleading and it is important for research to identify possible pitfalls in order to use simulations 
most effectively. In this study, we report on a key misconception students had about SDs that we call 
the “multi-sample distribution.” In this misconception, students came to believe that a SD was 
composed of multiple samples, instead of all possible samples, and that the SD must be constructed 
by literally taking multiple samples, instead of existing theoretically. We also discuss possible origins 
of this misconception in connection with simulations, as well as how some students appeared to 
resolve this misconception. 
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It is important to help pre-service mathematics teachers develop their own conceptual understanding 
of statistics content (Conference Board of the Mathematical Sciences, 2001), because their 
conceptual understanding impacts learning opportunities available for their students (Ball, Lubienski, 
& Mewborn, 2001). In statistics, one concept of critical importance is the sampling distribution (SD). 
It forms the conceptual basis of much of elementary statistics, including confidence intervals, 
hypothesis testing, and correlation testing (Lipson, 2003). Thus, if we want students to develop 
strong conceptual understandings of elementary statistics, it is essential to help our pre-service math 
teachers develop strong understandings of SDs, as well. 

Much research aimed at conceptual understanding of SDs focuses on exploration activities in which 
students repeatedly sample from a population (Aguinis & Branstetter, 2007; Chance, delMas, & 
Garfield, 2004; delMas, Garfield, & Chance, 1999; Glencross, 1988; Mills, 2002; Peck, Gould, 
Miller, & Zbiek, 2013; Watkins, Bargagliotti, & Franklin, 2014). These simulations are meant to 
show the emerging properties of the SD that: (a) the shape of the distribution is approximately 
normal, (b) 𝜇! = 𝜇, and (c) 𝜎! = 𝜎 𝑛 . However, some have realized that these same simulations 
might inadvertently be misleading (Watkins et al., 2014). It is beneficial for teacher educators to 
know what misunderstandings their students might develop from such simulations in order to use 
them most effectively. Our study seeks to build on this research by describing a previously 
undocumented misconception seen in pre-service teachers, which gets at the heart of what a SD even 
is. We also examine how this misconception might be resolved. 

Background on the Sampling Distribution 
Brief Recap of Sampling Distributions 

Many types of statistical studies are based on using a sample to estimate or test certain population 
parameters, such as the population’s mean (µ) or standard deviation (σ). Sampling distributions (SD) 
are what underlie the statistical methods used to do this. The basic idea of a SD is that, given a fixed 
sample size n, if all possible samples of size n are taken from the population, then the statistic of 
interest from all those samples creates a distribution in and of itself (Triola, 2010). For example, a 
SD for means is constructed by taking the sample means (𝑥) of all samples of the same size n from 
the population and putting them together to create a new distribution (see Figure 1). Note that there is 
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a different SD for every sample size n that is chosen, because n is the same for all samples within a 
given SD. The Central Limit Theorem (CLT) then guarantees that a SD for means will always have 
the same mean as the population, 𝜇! = 𝜇 , and a standard deviation given by 𝜎! = 𝜎 𝑛 . If n is 
sufficiently large, often cited as n > 30 (e.g., Triola, 2010), the CLT states that the SD will be an 
approximately normal distribution. Similar properties hold for SDs for proportions. It is important to 
note that SDs are theoretical in nature, in that they do not need to be empirically constructed to be 
used in statistical analysis. The CLT guarantees those properties that are needed for statistical 
analysis. 

 

 
Figure 1: Creation of a Sampling Distribution, taken from Triola (2010, p. 281) 

 
Brief Literature Review on Sampling Distributions 

A common tool for teaching SDs and the CLT are simulations, in which physical enactment or 
computer software is used to create the results of many samples and to partially construct a SD. 
Using simulations to help students learn about SDs has been recommended as far back as the 1970s 
(e.g., Committee on the Undergraduate Program in Mathematics, 1972). Some have demonstrated 
that these simulations can give insight into otherwise theoretically intractable ideas (e.g., Mills, 2002; 
Simon, 1994). Yet other research has shown that simulations are insufficient by themselves. delMas 
et al. (1999) found that when students were allowed to experiment with simulations, their 
understanding did improve by a little bit, but not by as much as expected. They realized that the 
simulations alone did not force students to notice relevant features, and that activities needed to 
carefully scaffold student noticing (see also Chance et al., 2004). Lipson (2003) explained that there 
is a jump between an empirically constructed approximation to a SD using simulations and the actual 
theoretical SD. However, Lipson’s focus was more on the influence that disconnect had on students’ 
understanding of inference. In this paper, we examine how that disconnect directly impacts students’ 
understanding of SDs themselves. Further, because simulated distributions are not perfect 
representations of the theoretical SD, Watkins et al. (2014) saw that students were sometimes misled 
by simulations. They observed students who incorrectly believed that the SD’s mean got “closer” to 
the population mean as n increases. In fact, the CLT guarantees that 𝜇! = 𝜇 exactly, regardless of 
sample size. The misconception we discuss is related to what Watkins et al. observed, and might 
even be a root cause of it. 

Taken together, this literature shows that simulations can be a useful tool in statistics education, so 
long as they are used carefully. We must be fully aware of potential pitfalls simulations might 
contain. We should continue to unpack possible issues in understanding SDs with simulations, in 
order to most effectively use simulations. This study adds a key, previously undocumented 
misconception, related to what a sampling distribution fundamentally is, that we observed in pre-
service teachers who experienced this type of simulation activity. 
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Theoretical Perspective: Processes versus Objects 
We view the concept of SDs as having a close connection to the theoretical notion of processes 

versus objects (Sfard, 1991, 1992). This lens gives valuable insight into possible SD misconceptions, 
and can help produce paths toward their resolution. In short, a process means an activity that can be 
conceptualized as being carried out, like imagining counting up to 1 million. It does not necessarily 
need to be enacted to be a process, but imagined. An object, then, is the encapsulation of such a 
process into a single cognitively entity. The “size” 1 million is a conceptual object, which can 
emerge out of imagining the process of counting up to 1 million. 

SDs inherently deal with the process of repeated sampling. That is, one can conceptualize taking a 
sample and recording its sample mean (or proportion), and then taking another sample and recording 
its sample mean (or proportion), and so on. However, the full comprehension of SDs is to realize that 
this process can be encapsulated into a final result: the distribution of all sample means (or 
proportions). The SD is the object that results from the process of repeated sampling. We view 
simulations, through this lens, as essentially a representation of the process aspect of a SD. It permits 
the process to be quickly viewed over a large number of samples (as seen in Figure 2). However, in 
these simulations the object aspect of the completed SD is typically not reached. This limitation 
comes because such simulations usually do not depict when every sample has been represented 
exactly one time in the simulation, or at least represented in exactly equal proportion to every other 
possible sample. This matches Lipson’s (2003) assertion that there is a jump from the empirically-
simulated approximate SD to the actual theoretical SD. In this study, we examine how this issue led 
pre-service teachers to make incorrect conclusions about the fundamental nature of what a SD is.  

 

       
Figure 2: Example of a simulation (http://onlinestatbook.com/stat_sim/sampling_dist/) 

Methods 
This report emerged from a broader study we were engaged in regarding pre-service mathematics 

teachers resolving their misconceptions about confidence intervals. Students for the study were 
recruited from an undergraduate “Teaching Statistics and Probability” course for mathematics 
education majors, focused on conceptual understanding and on task exploration. The pre-service 
teachers had all completed a pre-requisite undergraduate statistics course, or AP statistics. In the 
education class we recruited from, the students used a simulation of repeated sampling, as discussed 
in the literature review, to develop the ideas of SDs. 

The major purpose of the larger study was to understand how students might resolve 
misconceptions they held and to document the route they took in doing so. To recruit students for 
interviews, the students were given a quiz in their class regarding misconceptions on SDs and 
confidence intervals. Because the misconception we report on in this paper had not previously been 
documented, our specific misconception was not tested for, but emerged during the interviews while 
the students discussed other aspects of their understanding. From the quiz results, five students with 
varying levels of misconceptions about confidence intervals were selected to participate in two, hour-
long interviews. We give the students the pseudonyms Danielle, Ethan, Corinne, Tiana, and Anna.  
During the interviews, the students were asked to explain how confidence intervals are constructed, 
to design their own hypothetical study that would use confidence intervals, and to discuss various 
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aspects of SDs and confidence intervals. While conducting the interviews, the interviewer (Author 1) 
noticed a trend in terms of how all five students seemed to be talking about SDs. Thus, the 
interviewer began to follow up on this trend as well, and to make sure each student was asked about 
it. As the purpose of the larger study was to help students resolve misconceptions, the interviewer 
also attempted, impromptu, to document instances of students resolving this misconception during 
the interviews. 

To analyze this trend, we went through all of the parts of the interviews where students made 
statements or gave explanations regarding SDs. In examining all instances of normatively incorrect 
statement or explanation, we realized they typically dealt with one main misconception about SDs. 
That is, most incorrect statements or explanations about SDs seemed rooted in the same 
misunderstanding. Once we singled out this misconception, we went back to the interviews to try to 
identify where the misconception came from in terms of prior knowledge or in-class activity. In 
doing so, we saw an important likely connection to the in-class simulation. Finally, as the interviewer 
had attempted, in the moment, to understand and document these confusions, we tracked the 
students’ evolving conceptions of SDs over the interviews and looked for what was discussed in 
conjunction with changes in their understanding. This aided us in identifying what might help resolve 
the underlying misconception. 
Limitations 

There are some limitations to our analysis of this misconception. First, we had only five students in 
the sample, which is few. However, this report focuses only on documenting and discussing the 
misconception, rather than on establishing how common it is. Yet, since all five students in this study 
did share this same misconception, we posit that it is likely to be more widely shared. Second, this 
study was not originally designed to uncover this misconception, but it rather emerged from the data. 
Future work can be done to examine this misconception more systematically and to identify how 
common it might be among typical pre-service teachers. 

Results 
The Multi-sample Distribution Misconception 

All five students suggested that to do statistics, one essentially uses a “sampling distribution” that 
contains some of the samples of size n from the population, as opposed to a completed sampling 
distribution of all possible samples. For example, consider Corinne’s explanation. 

Corinne: If you took a bunch of samples and you found their means, you would get a sampling 
distribution. 

Interviewer: How many samples? 
Corinne: More than 30. 

Corinne implied that if one has a certain amount of samples (i.e. “30”), then the distribution of those 
sample means is a SD. In another example, Ethan was describing how his hypothetical statistical 
study could be done. He seemed to imply that to obtain a SD, one would literally collect several 
samples in practice and compile them into a SD. The interviewer was initially unsure what he meant, 
and asked about how he imagined a SD. 

Interviewer: What’s a sampling distribution? 
Ethan: The distribution of the means of your samples. 
Interviewer: How many? 
Ethan: Are you talking about in my thing [i.e. hypothetical study], or just in general? … [The SD is] 

the means of how many samples you take. 
Interviewer: But what if you only take one [sample]? 
Ethan: If you only take one sample then, [pause] I’m lost. 
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… 
Interviewer: [The SD] is the distribution of the means of all your samples. Okay. All the samples that 

you take, or all the samples that you could take? 
Ethan: That you take. 

Here, Ethan explained that a SD is created by empirically collecting multiple samples during a 
statistical study. That is, he did not conceptualize a theoretical SD with the properties guaranteed by 
the CLT. In fact, at one point Ethan suggested that “all possible samples” really meant all the 
samples it was possible for someone to practically take. Ethan was not alone in believing one must 
collect multiple samples to empirically create a SD to do statistics. Most of these students described 
that to carry out their hypothetical study, they would need to take many samples to create a SD, as 
seen in the following statements. 

Tiana: I want to take 30 samples of size 100. 
Corinne: I would take 100 samples of size 30. 
Ethan: I would get at least 200 samples just to be realistic. 
Danielle: You take a large number of samples, like say 1,000, to get a sampling distribution of 𝑥. 

It is clear that these students were all thinking of a SD as a collection, not of all possible samples, 
but of several literally collected samples. We call the conceptualization of such a distribution of 
many, but not all, samples the multi-sample distribution, denoted M-SD. We consider it a 
misconception when the M-SD is seen as being the SD. We claim that the M-SD misconception is 
closely connected to perceiving only the process part of the SD. That is, the process of repeated 
sampling is understood, but it does not have a theoretically completed end of all possible samples 
that is the object SD. In this way, M-SD is not “wrong,” but incomplete in a critical way. The 
students even seemed to understand that this process could continue, with more samples, to create a 
“better” M-SD, but they typically did not understand that the process has an end-result object that is 
the theoretical SD. 

In conjunction with the M-SD misconception, the students in our study exhibited some 
misconceptions previously reported on in the research literature. For example, many claimed that 
𝜇! ≈ 𝜇 rather than 𝜇! = 𝜇 (cf. Watkins et al., 2014), as in the following excerpt from Corinne. 

Corinne: [𝜇𝑥] is the mean of the means you sampled… In the real world, we never get to work with 
the distribution where µ and 𝜇𝑥 are equal. We just get closer and closer [with more samples]. 

In fact, we believe previously reported misconceptions like this regarding 𝜇! may really be a 
symptom of an underlying M-SD misconception. Note that the mean of the M-SD is technically 𝑥!, 
as opposed to 𝜇! because it is only a sample of sample means rather than the population of all sample 
means (where 𝑥 refers to a sample and µ to a population). In this perspective, it is true that 𝑥! ≈ 𝜇 as 
the students claim. It is only in the SD of all samples where 𝜇! = 𝜇 exactly. 
Possible Origins of the M-SD Misconception 

During the interviews, the students described aspects of their thinking that matched with the 
simulation activity used in their class to discuss SDs. In the classroom activity, each student 
randomly selected samples from a population and computed the sample mean of them. The activity 
culminated in the students plotting their sample means together to create a visual representation of 
what is, essentially, a M-SD. This activity may have fostered M-SD thinking in the students. For 
example, in her interview, Tiana recounted this simulation activity and explained that she understood 
the image she saw – of the multiple sample means plotted together – as being the SD. Regardless of 
whether the instructor may have mentioned that the image was not the SD, the strong visual that 
represented the culmination of the simulation activity seemed powerful enough that she interpreted it 
as though she were seeing a SD. 
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By contrast, Corinne did recognize in her interview that there is such a thing as a distribution of all 
sample means. However, she discarded it as anything practically useful in doing statistics, explaining 
instead, as seen in her excerpt above, that “in the real world, we never get to work” with the actual 
SD. She explained that you could only use the actual SD “in something like manufacturing where 
you have data on every item or when you have a small population. But in that case it would be 
pointless because you could just do a census and know the population parameters.” She explained 
that, practically speaking, in order to do statistics one would need to create the type of distribution 
seen in their class, that was made up of a collection of multiple sample means rather than all sample 
means. 

Another root of the M-SD misconception may lie in classroom discussion of the CLT. One property 
of SDs given by the CLT is that if the common sample size for all samples is sufficiently large, often 
given as n > 30, then the SD is approximately normal. However, students may have confused this 
with believing that they need at least 30 samples for the (M)-SD to be approximately normal. The 
simulation activity may have inadvertently led them to focus on the wrong thing for “n > 30.” In the 
simulation, the students saw that with each new sample mean added, the distribution began to 
resemble a normal distribution more. For example, when Ethan was explaining his hypothetical 
statistical study, he settled on wanting to collect 30 samples. 

Interviewer: Why is 30 a magical number to you? 
Ethan: The central limit theorem wants 30 [samples] for the sampling distribution to be normally 

distributed. 

Notice that Ethan is justified in asserting that “30” is connected to the normality property given by 
the CLT. But, he did not appear to connect n > 30 as representing the sample size of each of those 
samples, as opposed to the number of samples needed to create a reasonably normal (M)-SD. This 
result is supported in the students excerpts from the previous section about wanting 30, 100 or 1,000 
samples to make a sampling distribution. 
Possible Resolutions of the M-SD Misconception 

We defined the resolution of this misconception as recognizing that (a) the SD is a theoretical 
distribution from all possible samples and (b) that it does not need to be empirically constructed to be 
used. From our process-object perspective, the M-SD misconception essentially lacks the object 
component. Thus, resolution of this misconception is based on extending their process-oriented 
conception to include an object. Danielle, Ethan, and Corinne each gave some evidence of resolving 
this misconception. First, consider Danielle. One important part of her resolution of this 
misconception involved clearly distinguishing between sample size and number of samples.  

Interviewer: How many samples do we need to take before we can use the sampling distributions and 
assume that they are normal? 

Danielle: I think generally they say it’s supposed to be like 35 or 30. 
Interviewer: Samples? 
Danielle: Yeah. That’s the size of the sample [pause]. So wait, your question is? 
Interviewer: How many samples? 
Danielle: Oh, how many samples do we need to take. So, usually when we are using these types of 

things like our equations [refers to a formula sheet] we just take one sample!  

Here, Danielle seemed to have realized the mismatch in thinking that multiple samples are needed 
to literally create an SD versus the fact that the statistical formulas use only one sample. Then, by 
thinking of just this single sample, she began to create for herself the ideas of a SD. 

Danielle: Any kind of sample you take is going to fall… somewhere. It is possible to get one that is 
farther away from the population mean… [Draws Figure 3]. If you were to take a sample, just one 
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sample, then it will fall somewhere along here in this range that is close to the population mean 
[gestures toward the middle a population distribution in Figure 3]. 

 
Figure 3: Danielle building on the simulation to now imagine all possible sample means 

 
By reasoning with only a single sample, Danielle began to think more theoretically about where that 

single sample mean could be. In fact, this theoretical thinking seemed to help her imagine all possible 
samples, without having to literally collect all of them. 

Danielle: So, if you could possibly take every single sample of that certain size and you were to be 
able to plot that, the sampling distribution would be normal and so we, since that concept is true, 
then we can just pull one sample point and it will be a point from somewhere on the sampling 
distribution. 

We can see that Danielle had now conceptualized a SD as having all possible samples, and that it 
was theoretically, not empirically constructed. The single sample used in statistics was a member of 
this theoretical distribution. In fact, thinking of a single 𝑥 more abstractly appeared helpful for some 
students in transitioning from the empirically-grounded M-SD to the theoretically-based SD. Corinne 
also used single 𝑥’s to help make this transition. 

Interviewer: What happens if someone only picks one sample? Let’s make this the smallest possible 𝑥 
and this the largest possible 𝑥. [Here the interviewer writes a number line and marks two points 
along it.] 

Corinne: Without even knowing anything about this, most of them are going to be in the middle. So 
chances are that this one single [𝑥], it’s here somewhere [gestures to the middle of the number 
line.] 

Here, Corinne made an assertion about where a given 𝑥 might be, without trying to create multiple 
samples. The interviewer tapped into this by then asking Corinne to imagine where all possible 𝑥’s 
might fall along this number line. Corinne began to piece together where they might be, including 
that many 𝑥’s would fall toward the middle. She eventually drew a SD similar to Figure 3. The 
interviewer asked about some of the specific properties of this new distribution. 

Interviewer: Is µ the same as 𝜇𝑥? [i.e. assuming all possible samples] 
Corinne: I think at this point they are the same. 
Interviewer: Why? 
Corinne: Because at this point, if we have taken every possible sample, and take their means, and we 

are finding the mean of all those means, that is mathematically the same as finding the mean of 
all of those at once, which is finding µ. 

… 
Interviewer: So you are saying we can use just one sample [to do statistics]? 
Corinne: But you’re basing it off of information about all possible samples. 

By leaving the empirical enactment from the simulation, Danielle and Corinne could begin to 
reason theoretically about where one 𝑥 might lie, and then to where multiple 𝑥’s might lie, to then 
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where all 𝑥’s might lie. This seemed to help them extend the process seen in the simulation to an 
imagining of a completed SD object with all possible 𝑥’s being represented.  

Discussion 
We agree with the body of research that claims simulations are important for developing students’ 

understanding of SDs (e.g., Mills, 2002; Simon, 1994). We also believe our study helps us better 
understand why simulation activities might be misleading in some ways, as noted by Watkins et al. 
(2014). Our process-object perspective suggests that simulations can only account for the process 
part of the conception of SDs, and cannot adequately portray the object part. We believe this is the 
reason for the possible disconnect Lipson (2003) described between the empirical simulation and the 
theoretical SD. If a simulation can only achieve the process component, the M-SD becomes a 
possible misconception students might develop. To be clear, we see the process component of a 
conception of SDs as essential, and simulations as a valuable way to develop the process component. 
That is, if one tried to simply create the object SD without first developing the process behind it, one 
might be left with a pseudostructural conception instead (Sfard, 1992; Sfard & Linchevski, 1994). In 
other words, the students might conceive of an SD object, but without understanding the underlying 
process that leads to it. Thus, we promote simulations as a useful way to develop the process, but 
claim that instruction must, at some point, move past the empirical simulation into a theoretical SD. 
Of course, simply “telling” students that there is a completed theoretical SD after observing a 
simulation might be insufficient to bridge the gap between process and object. Rather, it seemed 
important for some of our students who resolved the misconception to reason more theoretically 
about the distribution of a single hypothetical 𝑥. This led to where multiple 𝑥’s, and eventually all 
𝑥’s, might be distributed. 

It was also important for our students to explicitly confront the difference between the sample size 
and the number of samples, which we believe is related to the misconception that 𝜇! gets closer to µ 
as sample size increases (Watkins et al., 2014). As sample size increases, it is true that a M-SD will 
have an 𝑥! closer to µ. However, since a SD deals with all samples, not an increasing number of 
samples, it will always have 𝜇! = µ. 

Finally, we wish to emphasize that the M-SD misconception is not “wrong,” but simply incomplete. 
In the spirit of perceiving misconceptions as useful building blocks, rather than faulty thinking that 
must be removed and replaced (see Smith, diSessa, & Roschelle, 1993/94), we find that resolving 
this misconception deals with adding on to what is already there, rather than taking away. Viewing 
the M-SD misconception in this light makes the path toward its resolution clearer, in that we can take 
the students’ understanding as is and help them extend it to a completed process-object conception of 
SDs. 
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