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Research studies support caregiver’s involvement in their child’s mathematical journey as 
foundational to their cognitive development and academic success as mathematical learners (e.g., 
Sheldon & Epstein, 2005). The purpose of this intrinsic case study was to understand how a 
caregiver initiated and/or continually engaged their child in spontaneous mathematical moments 
during the engineering design process. Through the analysis of approximately 13.5 hours of video 
data, we noted several ways in which Tonya guided, supported, and challenged Cindy through a 
shared endeavor of designing a remote-controlled delivery robot – questioning that promoted 
reflection and advanced Cindy’s mathematical understanding, affording Cindy opportunities for 
decision making, and providing Cindy with the mathematical language to describe her approaches 
within the engineering design process. 
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Objective 
Previous research suggests that interest and engagement in science, technology, engineering, and 

mathematics (STEM) can be triggered at a young age, and caregivers are considered to be one of the 
most significant influences in this development (e.g., Maltese & Tai, 2011). Additionally, the 
benefits of out-of-school learning experiences for youth is well documented and include positive 
dispositions toward STEM, greater likelihood of pursuing a STEM-degree and career, and 
development of interest and confidence in STEM (e.g., Bell et al., 2009; Denson et al., 2015). 
Engaging in teaching and learning of mathematics within home environments and other out-of-
school contexts are framed as shared family experiences and tend to include budgeting, home 
improvement projects, games, proportions of ingredients when using recipes, and verbal exchanges 
during mealtime (e.g., Esmonde et al., 2012; Pea & Martin, 2010). As such, caregivers, regardless of 
their own experiences, are able to act as mathematics educators in engaging their child(ren) in 
mathematical moments (Sheldon & Epstein, 2005). In this study, these mathematical moments are 
defined as a spontaneous experience to engage with and/or explore mathematical ideas and concepts 
(Cunningham, 2015), and situated within a project aimed at developing, implementing, and refining a 
program for integrating engineering design practices with an emphasis on emerging technologies 
(i.e., making, DIY electronics) into home environments of families. Research has shown that 
participating in engineering design principles support students’ application of mathematical concepts 
(e.g., Berland et al., 2014). Yet, we know very little of how such mathematical moments in the 
engineering design process arise in out-of-school learning contexts between caregiver and child. We 
address this gap in the literature by addressing the following research question – How does a 
caregiver initiate and/or continually engage their child in spontaneous mathematical moments during 
the engineering design process? We contend that caregivers and other family members should be 
recognized for their ability to enhance school mathematics within out-of-school learning contexts. 

Perspective 
In this study, we utilized a socio-cultural perspective, which views learning as active participation 

and engagement in cultural and social activities (Rogoff et al., 1993). More specifically, we 
employed Rogoff and colleagues’ (1993) guided participation in which participation is guided, 
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supported, and challenged from another in a shared endeavor; in this study, this other referred to the 
caregiver and the shared endeavor is the development of a robot (see below). As such, Rogoff (2008) 
defined participation as an interpersonal process in which individuals are actively observing and/or 
communicating with their words and hands. It builds upon the notion of zone or proximal 
development as it involves “not only the face-to-face interaction, which has been the subject of much 
research, but also the side-by-side, joint participation that is frequent in everyday life” (Rogoff, 2008, 
p. 60). Similar to Vedder-Wiess (2017), we contend that the caregiver’s role within in the process of 
guided participation is through modeling and engaging in spontaneous mathematical moments with 
their child. Collectively, the caregiver and child are employing their knowledge and understanding of 
mathematics. 

Methods 
The larger research project was conducted between January to May. We met with caregiver-child 

dyads once a month for approximately 3 hours in length. This particular study is an intrinsic case 
study of a caregiver-child dyad (Tanya and Cindy) engaging in mathematical moments during an 
engineering design project developed and designed by the dyad (Stake, 1995). As stated by Cindy, 
“My project is a remote-controlled delivery robot to help people who can’t get out of bed or are 
sick…I was thinking about someone in a nursing home.” At the time of the study, Cindy was a third-
grade student who aspired to be an artist. 
Data Collection 

The main source of data was video recordings of each monthly session and home video recordings 
of Tonya and Cindy working alongside a member of the team. Cameras were stationed as to capture 
the interactions between Tonya and Cindy, as well as interactions with facilitators and engineers who 
volunteered their time to assist the dyad. This amounted to approximately 11 hours of video data 
from the monthly sessions and approximately 2.5 hours of video data from the home visits. 
Data Analysis 

The analysis was conducted in two phases. During the first phase, both authors watched all the 
videos, individually looking for mathematical moments. We each noted the time range and provided 
a brief overview of the interaction in terms of engagement with mathematical ideas and/or concepts. 
Our goal was not to establish inter-rater reliability, but to capture identifiable mathematical moments, 
or ethnographic chunks, for further analysis (Jordan & Henderson, 1995). We met five times to 
discuss our observations as we acknowledged these identifiable moments to be influenced by our 
cultural understandings of and experiences with mathematics as a mathematics teacher educator and 
STEM education researcher, and science education doctoral student respectively. The final meeting 
focused on identifying specific moments that addressed the research question, which were 
transcribed verbatim and included non-verbal acts of communication. During the second phase, we 
individually read through the transcripts and noted the ways Tonya initiated and continually engaged 
Cindy in spontaneous mathematical moments. When we met to discuss, we were similar in our 
understanding of these spontaneous moments such as the manner in which Tonya posed questions to 
both initiate and advance Cindy’s engagement as a mathematician. We also developed a shared 
language (i.e., agency). 

Findings 
We present two specific instances in which Tonya initiated and/or continually guided Cindy in 

spontaneous mathematical moments during the engineering design process. Both examples occurred 
during the last workshop when Tonya and Cindy are brainstorming how to construct the tray with the 
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materials on hand. The first transcript begins as they are discussing the appropriate height for the tray 
once mounted on top of the rumba, which served as the base of the robot. 

T:  Okay. And so you were talking about the height of your stands and what you, you had said that- 
oh, well maybe you’ll do it a certain way. 

C:  Yeah, in the middle of the three beds. 
T:  Okay. So what would that measurement be here? How would you figure out that measurement? 
C: That would, wait…it would be all the beds to get all of it? No, it’d be the biggest height and then 

split that in half. So 32 in half is… 
T:  Are you trying to find the average? 
C:  Yeah. 
T:  So if you are going to take an average, you would take the three numbers. You would add them 

together and then you would divide them by three, if you’re trying to get the average. Is that what 
you want? Or are you trying to do it one particular height to get to the person that…it’s kind of 
your choice here. 

C: No. I want it to be the average. So then it could get to anything. And it would either be a little too 
tall or a little too short. They [people in bed] would have to reach down a little bit or reach up, or 
like sit up. 

T:  Okay. So you think we should do the measurement or do you want to figure out the actual height? 
C:  I want to figure out the average. 

The transcript highlights several things. One, Tonya provided Cindy with an opportunity to decide 
whether the average of the height of the three beds or the height of one bed was preferred (e.g., “It’s 
kind of your choice here.”). While Tonya more than likely knew the most appropriate approach 
within this context, she allowed Cindy to make her own decision (i.e., agency; Norén, 2015). Further, 
Cindy revealed her reasoning of why the average was appropriate in that the person in bed would 
have to reach down or up to gain access to food on the tray. Two, Tonya provided Cindy with the 
definition and language to describe the approach, which Cindy adopted as part of her language 
throughout the transcript (e.g., last line). Three, this example illustrates how Tonya was “with” Cindy 
in these moments as she gathered evidence of Cindy’s thinking and made in-the-moment and 
intentional decisions regarding the project and Cindy’s process and progress. This was often done 
through questioning. 

 In the next transcript, Tonya encouraged Cindy to find an alternative to converting inches to 
centimeters, which would be needed for her code. 

C:  (Speaking into a tablet.) Centimeters to inches. 
T:  (Reaches across the table to grab a tape measure.) Instead of using that, there’s a way that you 

can figure it out using this. What do you think it is?  
C:  (Grabs tape measure and pulls the tape from the housing. Smiles.)  
T:  Yeah, you don’t always need that. You can figure it out without just trying to get the quick 

answer. 
C:  Eight and a half. (Let’s go of the end of the tape and it retracts.) I mean, no. (Pulls the tape out 

again and seems to examine.) 
T:  Yeah, that doesn’t… Does that make sense to you? [Asking - How can 27 inches equal 8 

centimeters?] 
C:  It said eight. (Continues looking at the tape.) Oh no, I get it. I get it. Sixty…sixty…sixty-eight and 

a half.  
T:  (Takes the tape measure.) These are decimals, so it actually would be 68 and six-tenths. When 

you’re doing measurements, sometimes that tenth of a centimeter is going to make a big 
difference. 
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This mathematical moment was sparked through Tonya’s question that pushed Cindy to think of 
another conversion strategy, namely, reading the tape measure. We also observed Tonya questioning 
the reasonableness of Cindy’s first response of eight, indicating that 27 inches was the same as 8 
centimeters. This question, as noted in the previous example, was intentional; it served a purpose as 
Cindy was encouraged to reflect upon her response (NCTM, 2014). Lastly, Tonya explained to Cindy 
the importance of accuracy and precision appropriate to this particular context (i.e., Mathematical 
Practice 6; CCSO, 2010). 

Significance 
The two examples presented here illustrated how one caregiver initiated and engaged their child in 

mathematical ideas and concepts that spontaneously arose within and throughout a self-identified 
engineering design problem. Tonya guided, supported, and challenged Cindy through a shared 
endeavor, designing a remote-controlled delivery robot (Rogoff, 1993). These spontaneous 
mathematical moments afforded authentic sense making between caregiver and child, which may be 
harder to attain in structured learning environments and other out-of-school contexts such as STEM-
focused afterschool programs and summer camps (e.g., Vedder-Weis, 2017). For example, Cindy 
gained a different perspective and strategy of how to convert centimeters to inches; a strategy that 
was authentic and spontaneous to the design of the tray in this instance. Such mathematical moments 
were often initiated through questions for Cindy to explore within the design of the robot. These 
questions were not always answered orally, but addressed through physically engaging in 
mathematical ideas and concepts. Tonya further provided Cindy with a sense of agency in that Cindy 
was allowed to make mathematical decisions regarding the project. As such, we contend that this 
case highlighted how children can engage in mathematics in out-of-school learning contexts through 
the support and encouragement of caregivers. As a field, we should continue to think about ways to 
engage caregivers as mathematical partners, both within mathematics and STEM fields more broadly 
(e.g., engineering projects). As mathematical partners, researchers and educators should consider 
what is required for caregivers to actively and productively engage their children in spontaneous 
mathematical moments. Archer and colleagues (2015) made a similar argument in respects to science 
capital or the “level of scientific literacy and access to plentiful, high quality science-related cultural 
and social resources” (p. 15). 
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