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Identifying patterns is an important part of mathematical reasoning, but many students struggle to 
justify pattern-based generalizations. Some researchers argue for a de-emphasis on patterning 
activities, but empirical investigation has also been shown to support discovery and insight into 
problem structures. We introduce a phenomenon we call empirical re-conceptualization, which is the 
development of a generalization based on an empirical pattern that is subsequently re-interpreted 
from a structural perspective. We define and elaborate empirical re-conceptualization by drawing on 
data from secondary and undergraduate students, and identify three major affordances: Empirical 
re-conceptualization can serve as (a) a source of verification, (b) a means of justification, and (c) a 
vehicle for generating insight. 
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Objective: Leveraging the Power of Pattern-Based Generalizations 
Recognizing and developing patterns is a critical aspect of mathematical reasoning. Many students 

are adept at recognizing and formalizing patterns (Pytlak, 2014), but they can also struggle to 
understand, explain, and justify those very patterns they develop (Čadež & Kolar, 2014). One source 
of students’ difficulties may rest with the empirical nature of those generalizations. Students can 
become overly reliant on examples and infer that a universal statement is true based on a few 
confirming cases (Knuth, Choppin, & Bieda, 2009). One potential solution is to help students 
understand the limitations of empirical evidence and thus recognize the need for deductive arguments 
(e.g., Stylianides & Stylianides, 2009). These approaches have shown some success in helping 
students see the limitations of examples, but they also frame empirical reasoning strategies as 
stumbling blocks to overcome. 

In contrast, we have identified a phenomenon that we call empirical re-conceptualization, in 
which students identify a pattern, form an associated generalization, and then re-interpret their 
findings structurally. From this perspective, students can bootstrap their pattern-based generalizations 
into mathematically meaningful insights and arguments. In this paper, we describe and elaborate the 
construct of empirical re-conceptualization and address the following questions: (a) What 
characterizes students’ abilities to leverage pattern-based generalizations in order to develop 
mathematical insights? (b) What are the conceptual affordances of empirical re-conceptualization? 
We offer a secondary example, discuss the affordances experienced, and consider ways in which 
instruction can support the practice of empirical re-conceptualization. 

The Drawbacks and Opportunities of Empirical Reasoning 
While an emphasis on patterning that lacks meaning can promote the learning of routine procedures 

without understanding (Fou-Lai Lin et al., 2004), there are also a number of affordances that can 
arise from empirical investigation. The act of developing empirically-based generalizations can foster 
the discovery of insight into a problem’s structure, which could consequently support proof 
development (de Villiers, 2010). The degree to which pattern generalization is an effective route to 
proof is an open question, but there is evidence that students can and do engage in a dynamic 
interplay between empirical patterning and deductive argumentation (e.g., Schoenfeld, 1986).  
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Students lack sufficient experience with developing meaning from patterns. Curricular materials 
emphasize patterning activities that end with a generalization, typically an algebraic rule; developing 
an associated justification is seldom emphasized in standard classroom tasks. In fact, students 
typically receive little, if any, explicit instruction on how to strategically analyze examples in 
developing, exploring, and proving generalizations (Cooper et al., 2011). We propose that empirical 
re-conceptualization can be one way to provide opportunities to develop mathematical insight and 
deductive argumentation from pattern-based generalizing activities.  

Theoretical Perspectives: Structural Reasoning  
Harel and Soto (2017) identified five major categories of structural reasoning: (a) pattern 

generalization, (b) reduction of an unfamiliar structure into a familiar one, (c) recognizing and 
operating with structure in thought, (d) epistemological justification, and (e) reasoning in terms of 
general structures. The first category further distinguishes between result pattern generalization 
(RPG) and process pattern generalization (PPG) (Harel, 2001). RPG is a way of thinking in which 
one attends solely to regularities in the result. The example Harel gave is observing that 2 is an upper 

bound for the sequence 2 , 2 + 2, 2 + 2 + 2, … because the value checks for the first 
several terms. When we refer to empirical re-conceptualization and the identification of a pattern 
based on empirical evidence, we are referring to RPG. In contrast, PPG entails attending to regularity 
in the process. Harel discussed how one might engage in PPG to determine that there is an invariant 
relationship between any two consecutive terms of the sequence, 𝑎!!! = 𝑎! + 2, and therefore 
reason that all of the terms of the sequence are bounded by 2 because 2 < 2. 

We define empirical re-conceptualization as the process of re-interpreting a generalization based on 
RPG from a structural perspective. By structural perspective, we mean engaging in any of the 
following activities: (a) shifting from RPG to PPG; (b) reducing an unfamiliar structure into a 
familiar one; (c) carrying out operations in thought without performing calculations; (d) forming and 
reasoning with a new conceptual entity; or (e) shifting from figurative to operative activity. In short, 
re-interpreting a generalization from a structural perspective entails the ability to recognize, act upon, 
and reason with general structures. 

Methods 
Barney (a 7th-grade student) and Homer (a 9th-grade student) participated in a paired teaching 

experiment (Steffe & Thompson, 2000), which took place across five sessions averaging 75 minutes 
each. An aim of the teaching experiment was to investigate the students’ generalizations about the 
areas and volumes of growing figures, and then to study their development of combinatorial 
reasoning by exploring the growing volumes of hypercubes and other objects in 4 dimensions and 
beyond. 

All teaching sessions were videoed and transcribed. We first drew on Ellis et al.’s (2017) RFE 
Framework to identify generalizations, and then used open coding to infer categories of generalizing 
activity based on the participants’ talk, gestures, and task responses. We then identified an emergent 
set of relationships between the participants’ patterning activities and the types of generalizations 
they formed; this yielded the category of empirical re-conceptualization. In a final round we re-
visited the data corpus in order to identify all instances of empirical re-conceptualization, the 
generalizations that led to each instance, and the subsequent explanation or justification. In this 
manner we were able track the changes in students’ activity after engaging in re-conceptualizing, 
which led to the identification of the affordances detailed below. 
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Results 
We found three major affordances of engagement in empirical re-conceptualization. Namely, 

empirical re-conceptualization can serve as (1) a source of verification, (2) a means of justification, 
and (3) a vehicle for generating insight. Within the third category, we identified three types of 
insight: (3a) re-interpretation within a different context or representational register, (3b) the creation 
of a new generalization, and (3b) the establishment of a new piece of knowledge. In order to 
characterize the phenomenon of empirical re-conceptualization and its associated affordances, we 
present an exemplar case. 
Secondary Case: Growing Volumes in Three Dimensions and Beyond 

Barney and Homer explored the added volumes of three-dimensional, four-dimensional, and other 
n-dimensional “cubes” that grew uniform amounts in every direction. They began by determining the 
added volume of an n by n by n cube that grew 1 cm in height, width, and length. The students 
worked with physical cubes to consider the component pieces and determined that the added volume 
would be 3n2 + 3n + 1. When they then investigated the added volume of a cube that grew x cm in 
each direction, the students simply generalized from their prior result. Homer wrote “(3x)n2 + (3x)n 
+ x2”, replacing the 3 in the first two terms of his original expression with a 3x, and replacing the 1 in 
the last term, which he had conceived as 12, with an x2. Unsure about the correctness of this 
expression, Barney said, “let me model on the cube”, which he used to verify that the first term, 3xn2, 
was correct because it represented three additional rectangular prisms, each with a volume of xn2. 
Both students then realized errors in the next two terms. Barney explained that the second term 
should actually be 3x2n “because you’re adding 3 of x by x by n.” Both students also realized the 
final term would have to be x3. 

The students’ original generalization was based on the result of their prior activity in building up 
additional volume components, rather than attending to the process by which they grew the cube’s 
volume. However, Barney then experienced a need to verify Homer’s result, which led to re-
conceptualizing the generalization within the context of volume. He took the algebraic structure and 
made sense of it geometrically, in the process coordinating his mental activity of constructing 
component volumes and translating those quantities to algebraic representations.  

The students eventually went on to determine expressions of added volume for the 2nd, 3rd, and 4th 
dimensions, which the teacher-researcher wrote in Figure 1. Homer then saw a pattern in the 
expressions, exclaiming, “Oh, I know what’s happening!”: 

Homer: It is simple, as 2 – sorry I’m writing on it. [Begins to draw the blue lines.] Two plus 1 is 3, 
and 2 plus 1 is 3, 3 plus 3 is 6, 3 plus 1 is 4, 1 plus 3 is 4. [Writes the red numbers.] 

TR: Whoa. Huh. 
Barney: Wow. It’s just that one triangle, Pascal’s triangle, right? 

Homer recognized the pattern in which each coefficient could be determined by adding the sum of 
the coefficients of the prior consecutive terms. Pascal’s triangle then became a mechanism for 
determining the additional volume of a 5th-dimensional solid, which the students wrote as “5n4 + 
10n3 + 10n2 + 5n1 + 15”. They then decided to check their answer by listing the arrangements of 
three ns and two 1s (the 10n3) case, which served to verify that the coefficient was indeed 10. Barney 
then realized that given that they had verified the 10n3 case, they did not need to check the 10n2 case: 
“We can basically just take this and switch all the ns to 1s and 1s to ns.” This explanation of 
symmetry caused Homer to then extend that finding to new cases: “Oh, and you know what? You 
can do the same for these (pointing to the 5n4 and the 5n1 terms)…you can just replace these 1s for 
ns.”  



Beyond patterns: making sense of patterns-based generalizations through empirical re-conceptualization 

	 984	

       
Figure 1: Expressions for added volume in the 2nd, 3rd, and 4th dimensions 

 
Homer and Barney initially developed a generalization based on Pascal’s triangle, which allowed 

them to determine the expression for added volume. Their subsequent listing activity enabled the 
students to re-interpret that expression combinatorially. That pattern allowed the students to engage 
in a verification process and subsequently reason about outcomes to develop a new insight, that there 
must be symmetry in the coefficients. Barney was able to reflect on his operations in listing the ten 
outcomes and realize that there was nothing special about the characters n and 1, and that they could 
simply be reversed in the case of determining the combinations of two ns and three 1s. This then 
supported Homer’s new generalization. 

Discussion 
Empirical re-conceptualization can serve as a source of verification, such as when Barney checked 

the algebraic expression for adding x cm to a cube by appealing to the notion of volume. It can also 
serve as a source of justification, which we saw when Barney justified Homer’s pattern of xs in the 
expression 3xn2 + 3x2n + n3. We also saw the students developing insight. They developed new 
knowledge and understanding, such as when Barney generated the idea that the coefficient of n3 must 
be identical to the coefficient of n2, which then supported Homer’s ability to establish a new 
generalization that could be extended to the other terms, 5n4 and 5n. 

These affordances suggest that empirical re-conceptualization can serve as a vehicle to transform 
empirical patterns into meaningful sources of verification, justification, and insight. Certainly, 
students may also identify and generalize patterns that they do not understand or cannot justify. A 
danger is that students will engage in empirical investigation but then not seek to re-conceive their 
findings structurally. We find it useful to explore the conditions that can best support students’ 
transition to the productive next step, that of empirical re-conceptualization. Our data suggest that 
directing students back towards the contextual genesis of the patterns they generalize may be an 
effective strategy for supporting empirical re-conceptualization. With the support of concrete 
contexts for meaning making, the activity of generalizing empirical patterns can serve as a bridge to 
more generative and productive mathematical activity. 
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