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This theoretical commentary examines theory driven discussions in Science, Technology, 
Engineering, and Mathematics (STEM) fields and mathematics fields. Through this examination, the 
authors articulate particular parallels between spatial encoding strategy theory and units 
coordination theory. Finally, these parallel are considering pragmatically in the Elementary STEM 
Teaching Integrating Textiles and Computing Holistically (ESTITCH) curriculum where STEM and 
social studies topics are explored by elementary students. This commentary concludes with questions 
and particular directions our mathematics education field can progress when integrating 
mathematics in STEM fields. 
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Computational thinking (CT) has recently been making a larger presence in elementary classrooms, 
yet it is still not yet clear how CT relates to young children’s mathematical reasoning or even how it 
can be defined. Feldon (2019) explains “computational thinking has been characterized as a 
foundational competency, akin to reading and arithmetic” (p. 1).  Given this characterization, the 
instructional technology field has yet to define CT (Feldon, 2019; Grover & Pea, 2013, 2018). 
Margulieux (2019) examined findings that suggest relationships between students’ spatial reasoning 
and their Science, Technology, Engineering, and Mathematics (STEM) achievement when outlining 
particular theories that explain CT achievement. Pragmatic delineation of CT in the K-12 standards 
of the Computer Science Teachers Association (CTSA Task Force, 2011, p. 10) broadly characterize 
CT as a “problem-solving methodology” that draws from reasoning present in mathematics 
education, such as “abstraction, recursion, and iteration.” These learning constructs and types of 
reasoning echo K-12 mathematics reasoning, effective mathematics practices, and mathematics 
learning objectives. Thus, the purpose of this brief research report is to consider theoretically how 
CT reasoning (framed through spatial reasoning) relates to mathematics reasoning (framed through 
units construction and coordination).  

To frame this theoretical commentary, we first draw from spatial encoding strategy theory to 
explain how students’ engagement with visual and mental representations may explain CT 
achievement. Second, we draw from the units coordination learning theory to determine how young 
children may be drawing from mathematics reasoning in elementary grade levels. From this 
theoretical framing, we consider particular parallels between these theories to determine multifaceted 
mathematics reasoning, as integrated in CT activities.  Through an integrated STEM-driven 
curriculum grounded in social studies, titled, Elementary STEM Teaching Integrating Textiles and 
Computing Holistically (ESTITCH) (Hawkman et al., under review), we frame the pragmatic aspects 
of these integrated activities, and we delineate parallels between particular CT and mathematics 
reasoning, objectives, and practices. Moreover, we include social studies topics to determine how 
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social artifacts leverage CT and mathematics engagement and what is gained with such an 
interdisciplinary instructional approach.  

Theoretical Framework 
This theoretical discussion is set in an emergent perspective paradigm (Cobb & Yackel, 1996), 

meaning we examine individuals’ construction of mental objects and actions before considering the 
meaning gained through their engagement with social artifacts. Therefore, we begin by articulating 
theories framed with cognition learning science paradigms (Attkinson & Shiffrin, 1971; Baddeley, 
1994; Clements & Sarama, 2019) and radical constructivist paradigms (Glasersfeld, 1995; Norton & 
Boyce, 2015), before drawing on this emergent perspective (Cobb & Yackel, 1996) within the 
context of STEM curricula. This framework begins by discussing spatial encoding strategy theory 
(cognition learning paradigm) before drawing from units construction and coordination learning 
theory (radical constructivist paradigm).   
Spatial Encoding Strategy Theory 

Through a review of the literature and drawing specifically from Parkinson and Cutts’ (2018) 
findings, Margulieux (2019) proposed a spatial encoding strategy theory to explain the cognitive 
mechanisms related to individuals’ spatial skills and STEM achievement.  Margulieux explains that 
both the encoding of mental representations and the identification of landmarks (non-verbal 
representations) help individuals develop strategies and spatial skills (e.g., orientation, relations, and 
visualization).  Encoding (making sense of) mental representations is best characterized in the 
cognition learning sciences where (1) individuals “chunk” information to act on in their working 
memory (limited memory capacity – Baddeley, 1994) and (2) individuals draw from attentional 
mechanisms (a component of executive functioning processes – Clements & Sarama, 2019) to 
determine what feature of a representation warrants attention (Attkinson & Shiffrin, 1971). For 
instance, when young children are asked to use text or symbols to solve problems in STEM fields 
(e.g., develop a code to move a LEGO® robot), they would need to map their anticipated results to a 
mental model that they can manipulate (Parkinson & Cutts, 2018). Prior to this experience, we argue 
young children would need physical experiences to form this model.  

Moreover, Margulieux (2019) proposes individuals’ mental representation construction partially 
depends upon individuals’ development of non-verbal representations. For instance, when 
individuals chunk encoded information of mental representations, they are required to determine 
critical features and relationships of non-verbal representations (Margulieux, 2019). Thus, for 
individuals to encode mental representations successfully, they need to engage with/construct non-
verbal representations that form these mental models.  
Units Construction and Coordination Theory 

Units coordination and construction refers to the number of levels and type of units children can 
construct and bring into a situation (Norton & Boyce, 2015). We utilize units construction and 
coordination learning theories to frame students’ actions and establish transitions from their 
construction of pre-numerical units (physical material representing number) towards arithmetic units 
coordination. Children begin counting when first constructing pre-numerical units with which to use 
as material for future activity (Steffe & Cobb, 1988). These units are first constructed through 
children’s external activity before becoming internalized (imagined activity) and then interiorized 
(automaticity).  

To transition from pre-numerical units construction to arithmetic units coordination, children 
engage in one of four actions: unitizing, partitioning, iterating, and disembedding. Once students can 
count on they are next able to unitize (taking an item, or collection of items, as a whole unit that can 
be further acted upon) and iterate (making copies of a unit) units to construct number sequences (1, 
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2, 3, 4, 5, 6 …) (Norton, 2016; Steffe & Cobb, 1988). Once number sequences are constructed, 
students are able to partition (break into equally sized parts) these number sequences with which to 
count on from (Norton, 2016; Steffe & Cobb, 1988). To coordinate two levels of units, students 
would need to both iterate and partition (reversible actions), but would not yet be able to use them 
simultaneously (Norton, 2016). For instance, through counting, students could unitize two composite 
units (e.g., 3 and 12) where there are able to iterate three in a “count by” sequence (e.g., three, six, 
nine, twelve).  

Once students coordinate all three levels of units and are able to do so in an anticipatory manner, 
they compose reversible actions and develop what Piaget (1970) described as logico-mathematical 
actions (operations). These operations allow students to construct number as a mental object with 
which to disembed a whole into parts while remaining cognizant of the whole (i.e., 12 is understood 
as 4 sets of 3) (Norton, 2016; Steffe & Cobb, 1988). 

The CTSA (2011) articulate objectives grounded in some of these actions “abstraction, recursion, 
and iteration” (p. 10). For instance, as children iterate units, they construct sequences and are more 
readily able to abstract these sequences. Moreover, through children’s composition of reversible 
actions (e.g., iterating and partitioning), they are able to recursively make sense of activity in STEM 
fields, providing them strategy development for future success.  

Intersection of CT and Mathematics Reasoning within Social Studies Activities 
Much of the mathematics education literature (Sarama & Clements, 2009) has found relationships 

between young children’s spatial reasoning and mathematics development. By considering 
Margulieux’s (2019) spatial encoding strategy theory, we argue that children’s “chunking” of 
features from representations occurs in CT and in mathematics activities. By setting these activities 
in Social Studies, we posit children are using social artifacts to determine what warrants attention, 
which provides culturally responsive learning opportunities. Thus, we first consider parallels between 
one of the two CT learning objectives (see table 1) before considering how these might evidence 
themselves in the ESTITCH curriculum where integration of social studies and STEM provide 
meaning to students’ units coordination.  

In table 1, we outline relationships between two CT learning objectives and how they relate to 
corresponding elementary mathematics objectives and practices. For instance, when considering 
children’s ability to decompose systems of computational thinking tasks, we propose their reasoning 
would be similar when they apply properties of operations, generate patterns, and evaluate 
expressions. To meet both sets of objectives, we posit they would need reason abstractly and attend 
to precision. In particular, students would be required to have two or three levels of interiorized units 
(dependent on type of operation) and would be required to determine critical features of a visual 
representation that relates to the goal of the task.  

On day five, part 2 in the ESTITCH curriculum, students use stories centered on immigration, 
migration, and forced relocation to determine what landmarks are present in their own histories and 
how might they be used to form a timeline. Through their timeline development, they create circuits 
coded to represent these landmarks and proportional length/time to represent relationships between 
these landmark events. Through these activities, students are representing time and length in a scaled 
model, which presses them to generalize particular patterns abstractly and attend to precision of these 
events. Moreover, students are constructing units based on features of cultural artifacts they value to 
coordinate in a linear format. These integrated activities are powerful because they draw from 
cultural artifacts that children can connect to their mental representations of experiences and 
development of relationships between units that form these relationships.  
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Table 1: Intersection of Computational Thinking, Mathematics Standards and Mathematical 
Practices 

Computational Thinking Operations and Algebra Mathematical Practices 
Decomposition: Break 
down a task into minute 
details.  
 

Apply properties of operations as strategies to 
multiply and divide (3.OA.B.5). 
Generate a pattern that follows a given rule. 
Identify features of the pattern not explicit in 
the rule itself (4.OA.C.5). 

Reason abstractly and 
quantitatively (MP2) 
 
Attend to precision 
(MP6). 

Pattern Generalization and 
Abstraction: Filter out 
information to solve a 
certain type of problem 
and generalize 
information. 

Identify arithmetic patterns and explain them 
using properties of operations (3.OA.D.9).  
Write simple expressions, and interpret 
numerical expressions. Analyze patterns and 
relationships (5.OA.A.2). 

Look for and make use of 
structure (MP7). 
 
Use appropriate tools 
strategically (MP5). 

 
To emphasize the mathematics in this unit of study, an educator could have students construct 

visual models of decimals to represent time in such a proportional manner. For instance, if ten meter 
sticks represented one whole unit (one second), students could explore proportional relationships 
with smaller portions of a second with base-ten blocks (one centimeter in length) to explore coding 
with milliseconds. This type of precursor activity allows students opportunities to develop 
proportional relationships with physical models before requiring them to draw from mental models of 
the same relationships (MacDonald et al., 2018).  

Conclusion 
By considering the intersection of students’ reasoning associated with STEM and mathematics 

fields, we are more able to emphasize mathematical reasoning in curricula development while 
utilizing theories that focus on students’ mathematics reasoning. Moreover, as theory and associated 
curricula begins to emerge in the STEM fields, more questions surrounding theory and curricula need 
to be considered. For instance, how do STEM activities afford and/or constrain students’ 
mathematics reasoning? What trajectories in STEM are present for young children in prekindergarten 
classrooms as they transition to elementary classrooms? How might students with particular learning 
disabilities evidence STEM reasoning development in elementary classrooms and how might this 
relate to their access to mathematics in schools? Only through such multi-faceted theoretical 
frameworks and questions will our field continue to progress in a technology-driven society.  
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