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Research is mixed on whether understanding decimal magnitude supports operations with decimals 
or whether operations can be learned before and while students develop understanding of decimal 
magnitude. In the present study, we used a large scale, longitudinal design to investigate students’ 
knowledge of decimal comparison and operation before and after decimal comparison alone was 
introduced in the curriculum. Student performance on a decimal comparison task did not increase, 
but there was an increase in performance on decimal subtraction and decimal multiplication tasks, 
topics which were not part of the mandated curriculum during the relevant period of instruction. 
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Perspectives 
Researchers examined various conceptual hurdles involved in meaningful interpretation and use of 

the notational system involving decimals (Resnick et al., 1989). Hiebert (1992) proposed three types 
of knowledge which are important to comprehend the decimal system: knowledge of the notation, 
knowledge of the symbol rules and knowledge of quantities and actions on quantities. The 
knowledge of notation comprises of “how the symbols are positioned on paper” (ibid, p. 290) rather 
than understanding of what ‘.’ means or what quantities it represents. For instance, a student can 
compare two decimals correctly, but can have incorrect reasoning to explain their answers (see 
Resnick et al., 1989 for details on erroneous rules while comparing decimal numbers). The 
knowledge of the symbol rules prescribes on “how to manipulate the written symbols to produce 
correct answers” (Hiebert, 1992, p. 290). For instance, while adding and subtracting two or more 
decimals, the numbers need to be lined up systematically (Lai & Murray, 2015). This knowledge is 
analogous to Skemp’s (1976) idea of instrumental understanding where an individual can manipulate 
mathematical syntactic symbols using appropriate rules, procedures, algorithms, etc. to produce the 
correct answer, even when without understanding the underlying reasons. Knowledge of quantities 
and actions includes the understanding of decimal numbers are representing quantities, i.e., measures 
of objects “…by units, tenths of units, hundredths of units, and so on” and comprehending the 
reasons that explain “what happens when the quantities are moved, partitioned, combined, or acted 
upon in other ways” (Hiebert, 1992, p. 291). Lai and Murray (2015) related the knowledge of 
quantities and actions on quantities with developing a comprehensive understanding of the decimal 
topics.  
Decimal Comparison  

Students build on whole number ideas when they engage with decimals, and this both helps and 
hinders learning. Lee and colleagues (2016) argued that due to the representational nature of decimal 
numbers, which is virtually indistinguishable from that of whole numbers, the students find decimal 
magnitude comparison tasks easier as compared to the fraction magnitude (see also, DeWolf et al., 
2014; Iuculano & Butterworth, 2011). Researchers claim that students often perform well on the 
decimals comparison tasks by following syntactical rules (Lachance & Confrey, 2002), rather than 
developing a conceptual understanding of it. However, the common practice of teaching decimals as 
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an extension of the whole numbers might convey an inadequate understanding of place-value system 
(Fuson, 1990; Martinie, 2014).  
Sequence of Decimal Instruction 

In the United States, decimal instruction begins in the fourth grade with comparisons of fractions 
written in decimal form with denominators of 10 and 100. A decimal is regarded as the one-
dimensional magnitude of a fraction (a/b = c) expressed in the form of the standard base-10 metric 
system (Lee et al., 2016). This continues in fifth grade with decimal operations to the hundredths 
place (National Governors Association Center for Best Practices, 2010). Decimal instruction then 
continues through middle school (Rittle-Johnson et al., 2001). 

Although curricula frequently sequence decimal comparison instruction before operations, there is 
little research available to support this sequence. The magnitude-before-computation sequence is 
supported for fractions and standards and curricula appear to follow it for decimals based on the idea 
that fractions and decimals are closely conceptually related, even though there has been very little 
research on this instructional order. Arguments for teaching decimal magnitude before tackling 
operations between decimals numbers are formed by research that shows that children who are less 
comfortable with fraction magnitudes are also not as good as their counterparts at computations 
involving fractions (Lortie-Forgues et al., 2015). Other researchers note that students can understand 
decimal magnitude without being able to understand the results of computations involving decimals, 
which implies that understanding decimal magnitude is a prerequisite for decimal operations (Siegler 
& Lortie-Forgues, 2015). 
Decimal Comparison and Operations with Decimals 

Even though decimal magnitudes are taught first and operations second, the concepts appear to be 
intertwined in the minds of students. Decimals are familiar to students before they reach fourth grade 
to some degree because they follow some of the whole number rules, even though students often 
misapply those rules for comparing and computing with decimals (Ren & Gunderson, 2019; Rittle-
Johnson et al., 2001; Vamvakoussi & Vosniadou, 2004). As students make sense of decimals in 
school, they begin to apply what they understand to computation even if they have not been explicitly 
taught to do so. Hiebert et al. (1991) showed that children could learn about decimal concepts and 
structure and still show growth on decimal computation with symbols without detailed instruction on 
procedures. Other research has found that intermingling work on decimal place value with decimal 
addition and subtraction results in strong student performance, which is opposite of the assumptions 
surrounding magnitude-first instruction (Rittle�Johnson & Koedinger, 2009). Given the mixed 
findings from past research that has mostly relied on small-scale qualitative data, in the present study, 
we used a large scale, longitudinal design to investigate students’ knowledge of decimal comparison 
and operation before and after it was introduced in the curriculum. In particular, we sought to answer 
two research questions. (1) How does knowledge of decimal comparison and operations with decimal 
change during the year in which decimals are formally introduced in the curriculum? (2) Are the 
patterns that characterize students’ responses at each time point more indicative of magnitude-
before-operation or intermingled learning in the decimal domain? 

Methods 
The data is drawn from a larger study that included a representative sample of Grade 4 elementary 

teachers in Indiana. These teachers administered 8-item tests to their Grade 4 students (N = 1467) in 
the Fall of 2017 and Spring of 2018, and the data we report comes from three items on that test. The 
participation in this survey was voluntary for the students and they were given 15 minutes to work on 
the test. McNemar’s test was used to compare the pre-test and post-test results of the same students 
in grade four at two different points in the school year, so we had matched pairs of subjects with a 
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dichotomous trait of correct or incorrect for each question. We used alluvial diagrams to search for 
patterns in pretest and posttest responses. 

 
Figure 1. Pretest weighted flow of participants between response categories. 

Results 
An exact McNemar’s test was used to compare the two conditions (correct and incorrect) on the 

pre- and post-test over fourth-grade fraction and decimal knowledge. The change in the number of 
students who correctly answered the comparison question from the pretest to the posttest was small, 
44.31% to 45.07%. The analysis showed that there was not a statistically significant positive change 
between the pre- and post-test for ordering decimals from smallest to largest (p = 0.689). Of the 
1,467 students who took the pre- and post-tests, 642 answered the ordering question correctly on the 
pre-test and 653 answered correctly on the post-test. 

In contrast, there was a larger change in the number of students answering the decimal subtraction 
question correctly on the posttest from 10.67% to 28.57%, and this change was a statistically 
significant (p = 0.000). For decimal addition, 155 students answered correctly on the pre-test and 414 
answered correctly on the post-test. For the decimal multiplication question, the increase was more 
modest, from 10.35% answering correctly on the pretest to 17.53% answering correctly on the 
posttest. Similar to the decimal subtraction problem, this increase statistically significant (p = 0.000). 
In the decimal multiplication question, 150 students answered correctly on the pre-test and 254 
answered correctly on the post-test. The students’ performance differences between the decimal 
magnitude question and the operation questions shows that as a group the students improved in their 
ability to operate on decimals without substantially increasing their understanding of decimal 
comparison. 
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Figure 2. Posttest weighted flow of participants between response categories. 

 
We examined the relationship between responses on these three items and compared these patterns 

of responses between the pretest and posttest. The alluvial diagrams below show weighted flows 
among the three decimal questions on the pre- and posttests from the first decimal question about 
comparing decimals, through the subtraction question, and then to the multiplication question. These 
diagrams illustrate how responses to decimal items early in the test were related to responses later in 
the test at each time point. In particular, although the number of students who answered the 
comparison question did not significantly increase at posttest, a much larger portion of those students 
went on to answer the two operation questions at posttest than at pretest (see large ribbon at the 
bottom of Figure 2).  

Discussion and Implications 
We expected that fourth grade students would show more growth on decimal comparisons than 

decimal operations in fourth grade because decimal comparison is a fourth-grade standard and 
decimal operations are a fifth-grade standard. Students were presumably receiving more instruction 
on magnitude comparisons than on decimal operations. What we saw instead was that growth in 
decimal comparisons was not statistically significant yet growth in decimal operations (subtraction 
and multiplication) were statistically significant. Furthermore, by comparing the patterns between 
items at each time point we noticed that a majority of the students who answered the multiplication 
question at posttest also answered the comparison and subtraction problems, suggesting most of the 
change from pre to post was driven by a cohort of students who solidified their understanding of 
operations during the year in which comparison was taught. These findings confirm at scale what 
other researchers have found in small, qualitative studies; namely, that the conceptual development 
of both comparisons of magnitude and operations happen concurrently rather than sequentially. 
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