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Mathematical tasks are central to students’ learning since they can influence and structure the ways 
in which students think about mathematics. Carefully selected tasks have potential to broaden 
students’ views of a subject matter and facilitate their mathematical growth. However, research 
identifies that cognitive demands of tasks may change as the tasks are enacted during instruction. 
For this reason, it is important to understand what instructors can do to maintain the intended 
cognitive demands. In this paper, we investigate a teacher’s actions for maintaining high-level 
cognitive demands of tasks in teaching proof by mathematical induction. Our findings suggest that 
the method of quasi-induction (Harel, 2002) may be considered as an example of a productive 
scaffolding strategy for assisting students in mastering proof by induction. 
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Proof by mathematical induction is a technique for proving statements about natural numbers. To 
prove that proposition ! !  holds for any natural number !, one needs to check that (1) ! 1  is true 
(the base case) and (2) if ! !  is true for some fixed but arbitrary natural number !, then !(! + 1) is 
also true (inductive implication). The principle of mathematical induction poses conceptual 
difficulties to college students (Dubinsky, 1991; Harel, 2002; Movshovitz-Hadar, 1993; Stylianides, 
Stylianides, & Philippou, 2007).  

Carefully selected tasks can help students overcome cognitive obstacles associated with proof by 
mathematical induction. Mathematical tasks play a crucial role in students’ learning. They can shape 
students’ conceptions about the subject. Furthermore, they offer an opportunity for teachers to lower 
their authority in the classroom, in turn allowing students to create mathematics for themselves. 
However, one must be able to strike a balance when determining the appropriate difficulty of task for 
a student. When tasks do not significantly challenge the student, they may become routine or 
discourage creativity. In contrast, if a task is too difficult, students may make insufficient progress 
toward the intended mathematical goal.  

The cognitive demand of a task represents its level of difficulty (Stein, Grover, & Henningsen, 
1996). The cognitive demands of tasks for K-12 students have been well documented (Spears and 
Chávez, 2014; Bieda, 2010; Henningsen and Stein, 1997). However, to our knowledge, cognitive 
demands of have not been extensively explored at the undergraduate level. This study aims to 
contribute to the research on cognitive demands of tasks by considering problems an instructor used 
in teaching proof by mathematical induction. Specifically, the purpose of this case study is to 
investigate a teacher’s actions during the enactment of high-level tasks. Results address the following 
research question: what are the teachers’ actions for maintaining high-level cognitive demands of 
tasks in teaching proof by mathematical induction? 

Theoretical Framework  
The present study is guided by the Mathematical Tasks Framework (Stein et al., 1996). This model 

describes the evolution of a task through three phases of classroom: as written in instructional 
materials, as set up by a teacher in the classroom, and as implemented by the students. Ultimately, a 
mathematical task should lead to student learning.  
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For the purposes of this study, we distinguish between planned and enacted mathematical 
instruction. Planned instruction refers to how teachers plan a mathematical task and how they pose it 
in the classroom. Enacted instruction is the actual teaching that occurs, including the active roles of 
both teachers and students (Remillard, 2005). The Mathematical Tasks Framework represents 
planned instruction by the first two phases and enacted by the third one. 

The framework further specifies two dimensions of tasks, task features and cognitive demands, that 
may affect the transition between phases. This study is centered around cognitive demand. Cognitive 
demand refers to the variation in the kind of thinking processes required of students while engaging 
with the tasks. According to Stein et al., (2009), there are four levels of cognitive demands: a) 
memorization, b) procedures without connections, c) procedures with connections and d) doing 
mathematics. The first two levels are traditionally considered low-level demands, while the latter 
refer to high-level demands.  

The enactment of mathematical tasks of high cognitive demands allows students to develop sense-
making and reasoning skills, critique their peers’ solutions, formulate examples and 
counterexamples, create viable justifications, and properly communicate their reasoning. Therefore, 
implementation of high-level tasks may be beneficial for students’ mathematical growth. Planning 
the implementation of a task is crucial to students’ learning that occurs around this task. However, 
research identifies that teachers have difficulty enacting high-level tasks even if they were planned as 
such (Boston & Smith, 2009). Teachers may either maintain the high cognitive level or they may 
lower it to make tasks more accessible for students. Stein and Smith (1998) suggest a list of factors 
associated with the maintenance of high-level cognitive demands. These factors include teachers 
giving sufficient time, making conceptual connections, pressing for justifications, and scaffolding 
student thinking and reasoning. 

The term scaffolding has been used in various contexts. Anderson (1989) highlighted the 
importance of the Vygotskian notion of scaffolding in supporting students’ high-level thinking 
processes. Henderson and Stein (1997) define scaffolding as a teacher’s assistance in response to a 
student’s struggle with a task. This assistance enables the student to complete the task alone, but does 
not reduce the cognitive demands of the task. William and Baxter (1996) separate the constructs of 
analytic and social scaffolding. Social scaffolding refers to the scaffolding of social norms; analytic 
scaffolding is the “scaffolding of mathematical ideas for students” (p. 24). Speer and Wagner (2009) 
consider analytic scaffolding as guiding students “further toward the desired mathematical goal(s) by 
using selected student contributions” (p. 536). For the purposes of our data analysis, we put these 
ideas together and define the construct of scaffolding as a teacher’s pedagogical strategies or actions 
toward the desired mathematical goals in response to or in anticipation of students’ struggles. 
Furthermore, we introduce the term productive scaffolding to refer to scaffolding that maintains the 
cognitive demands of the task. 

Data and Methods 
This study used one white male instructor’s materials and three episodes of teaching proof by 

mathematical induction at a large public research university in the southeastern United States. The 
course is a junior-level course designed to teach mathematics majors typical mathematical proof 
techniques. The data used are part of a larger project studying cognitive components of proof by 
mathematical induction. For this project, research-based instruction was developed and implemented. 
Teaching episodes were video and audio recorded and transcribed by the authors. 

We analyzed the instructor’s lecture notes as written prior to instruction. All mathematical tasks 
were categorized using the Tasks Analysis Guide (TAG) (Stein et al., 2000) with respect to Stein et 
al.’s (1996) levels of cognitive demands. Once a consensus was reached between us, we went 
through two phases of video analysis and coding. During the first round of video analysis, we 
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classified each mathematical task’s level of cognitive demand as it was presented in the classroom. 
We then coded the teacher’s actions for instances of Stein et al.’s (2009) factors for maintaining 
cognitive demands, using Vygotsky’s notion of scaffolding. After identifying the factors, we returned 
to our data to closely study the instances of scaffolding using our definition. 

Results and Discussion 
During the observed teaching episodes, the instructor used PowerPoint slides with three tasks 

displayed on three big screens around the room (Figure 1).  
 
1. For each of the following parts, decide whether the given information is enough to conclude that the 

following claim is true. 
Claim: ! !   is true for all ! ∈ !!. 

If the given information is not enough, offer a brief explanation on why (perhaps listing a value of ! for 
which ! ! ,  is not known to be true). 
a) ! 1  is true and there is an integer ! ≥ 1, such that ! ! → !(! + 1). 
b) ! 1  is true and for all integers ! ≥ 1, ! ! → !(! + 1). 
c) For all integers ! ≥ 1, ! ! → !(! + 1). 
d) ! 1  is true and for all integers ! ≥ 2, ! ! → !(! + 1). 

2. a)   Prove that for all natural numbers !, 3 divides 8! − 5!. 
b) Prove that if 3 divides 8! − 5!, then 3 divides 8! − 5!. 

3. Prove that for all natural numbers !,  2 + 2! + 2! +⋯+ 2! = 2!!! − 2. 
Figure 1: Tasks 

 
When presenting the tasks to the class, the instructor provided students with little preliminary 

explanation. He typically displayed the tasks on the screens and encouraged students to work in small 
groups. For this reason, we can claim that these tasks were set up by the teacher in the same way that 
they were presented in the instructional materials. In the following discussion, we will refer to the 
tasks of first or second phase (Stein et al., 1996) as planned.  

We further used TAG as an instrument to analyze the cognitive demands of tasks. All the tasks 
exhibited key attributes of “Doing Mathematics” tasks (see Stein et al., 2000). The problems required 
complex and non-algorithmic thinking and considerable cognitive effort. They also encouraged 
students to explore and understand the nature of mathematical concepts and to access relevant 
knowledge and experience. 

The first round of analysis revealed the presence of most of the factors associated with maintaining 
high-level cognitive demands of tasks (Henningsen & Stein, 1997, Boston & Smith, 2009). First, the 
instructor seemed to allot an appropriate amount of time for the students to engage with the tasks 
through small-group discussion. Second, students received formal instruction on logical implication 
before they were introduced to the principle of mathematical induction. Given that logical 
implication is an important part of each task, we can argue that the tasks build on students’ prior 
knowledge. Third, the instructor constantly questioned students by asking them to rephrase and 
justify their reasoning. He also frequently made conceptual connections between the tasks and 
students’ solutions and modeled high-level performance through presenting counterexamples to 
students’ erroneous claims. 
Scaffolding 

Avital and Libeskind (1978) introduced the method of “naïve induction” to assist students in 
overcoming their bewilderment of the transition from the base case to the inductive step. Naïve 
induction has been elaborated by Harel (2002) and labeled as “quasi-induction.” Prior research has 
identified quasi-induction as a fruitful instructional approach (Harel, 2002; Cusi & Malara, 2008).  
This method engages students in repeated application of the inductive implication ! ! → ! ! + 1  
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for beginning values of !, reinforcing the logical reasoning that is essential in proof by mathematical 
induction. More specifically, students first establish that ! 1  is true. Then, they create a chain of 
logical implications ! 1 → ! 2 ,! 2 → ! 3 ,! 3 → ! 4 , and so on. After considering these 
first few implications, students can then infer that the process must continue until eventually ! !  is 
shown to be true.  

The idea of quasi-induction was built into the overall observed instruction. In anticipation of 
students’ struggle with formal proof, Tasks 1 and 2 were designed to engage students in quasi-
inductive reasoning. Quasi-induction was first explicitly introduced by one of the students in the 
discussion of Task 1c who said, “1 works, so ! 1 + 1  works, so 2 works. And you can plug 2 back 
in for ! and the logic repeats itself.” In response to the student’s reasoning, the instructor discussed 
mathematical rigor of quasi-induction, but accepted the suggested solution. Furthermore, during the 
group work on Task 3, students in one of the groups were not engaged with the task. The instructor 
suggested they use quasi-induction: “Sometimes it helps to do – just try a bunch of cases, just to get a 
feel of what’s going on.” This prompt allowed the task to still have the key attributes of Doing 
Mathematics while making it more accessible for the students.  

Task 2a was introduced at the very beginning of the first class. One of the students suggested using 
the binomial expansion to prove the statement. The teacher acknowledged this idea but encouraged 
the students “to practice something inductive.” The instructor anticipated students’ struggle with 
formal solution using proof by mathematical induction. For this reason, after the students went 
through Tasks 1a-1d, he presented an “easier” Task 2b. The use of Task 2b did not reduce the 
cognitive demand of Task 2a. However, the students were given means to generalize the proof of 
! ! → ! ! + 1  from a particular case of logical implication ! 5 → ! 6 . Therefore, we consider 
the idea of generalization from a particular case as another example of what we call productive 
scaffolding.  

Conclusion 
This study provides an example of instructor’s strategies for maintaining high-level cognitive 

demands of tasks in teaching proof by mathematical induction. The actions discussed above may 
inform instructors in preparation for and implementation of teaching mathematical induction.  Our 
findings are consistent with the factors suggested by the extant literature (Henningsen & Stein, 1997, 
Boston & Smith, 2009 Stein & Smith, 1998). Namely, the teacher actively built upon students’ prior 
knowledge, constantly asked students to explain their reasoning, and purposefully facilitated 
conceptual connections. We also report that scaffolding plays a central role in teaching proofs. In the 
context of proof by mathematical induction, the method of quasi-induction is suggested to be an 
example of what we call a productive scaffolding. 

Although formal mathematical induction may be considered as a generalization of quasi-induction, 
there is still a cognitive gap between the two, which the students are not always able to bridge. Harel 
(2002) described this gap as a difference in perception of the inference ! ! → ! ! + 1 . Future 
research must elucidate scaffolds as students attempt to bridge the gap.  
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