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In recent years, researchers have advocated for measuring angles by measuring circular arcs (i.e., 
circular quantifications of angularity). Leveraging results from a teaching experiment with ninth-
grade students, I demonstrate the existence of non-circular quantifications of angularity, which have 
not previously been acknowledged in existing empirical research or standards. 
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Angularity is an important geometric attribute throughout K–12+ curricula. It arises in many 
contexts including classifying shapes, congruence, similarity, transformations, construction, proof, 
coordinate systems, and trigonometry. Despite this prevalence, few studies have investigated how 
students reason about angularity (Smith & Barrett, 2017). At the undergraduate level, researchers 
have argued that robust quantifications of angularity are critical for trigonometry (Akkoc, 2008; 
Moore, 2013). However, research on angularity with high school students is especially scarce. This 
presents a problem. In fact, Moore (2013) noted, “future studies that investigate secondary students’ 
quantification of angle measure are needed…” (p. 243). To this end, I conducted a teaching 
experiment with ninth-grade students to understand how they quantified angularity. In this report, I 
elaborate the quantifications of angularity indicated by two students and consider implications of 
these results.  

Theoretical Components and a Hypothesis 
This study was informed by principles of quantitative reasoning (Thompson, 1994; 2011). A 

quantity is an individual’s conception of a measurable attribute of an object or situation; quantities 
are mental constructions consisting of three interrelated components: (a) an object, (b) an attribute, 
and (c) a quantification. A quantification involves a collection of mental operations that an individual 
could carry out to measure an attribute or interpret a measurement value in a given context. For 
example, upon assimilating an angle model an individual might establish a goal of determining how 
open the angle model is in degrees; alternatively, an individual might be asked to consider how to 
make a one-degree angle. In these instances, the collection of mental operations activated would be 
components of the individual’s quantification of angularity.  

Following Thompson’s (2008) first-order conceptual analysis, Moore (2013) elaborated that 
quantifying angularity involves (a) considering a circle centered at an angle’s vertex, (b) making a 
multiplicative comparison of two lengths (e.g., arc length and circumference), and (c) recognizing 
this ratio is invariant across all possible circles centered at the angle’s vertex; for example, a one-
degree angle “subtends 1/360 of the circumference of any circle centered at the vertex of the angle” 
(p. 227). This approach is compatible with the CCSSM standards, where angle measure is explicitly 
introduced in Grade 4. I refer to these quantifications of angularity as circular quantifications of 
angularity because they leverage multiplicative comparisons of arcs and other circular lengths (e.g., 
circumference, radius, etc.). Circular quantifications of angularity yield coherent interpretations for 
angle measure across standard units of angular measure; thus, such quantifications of angularity are 
productive, particularly for the study of precalculus mathematics and beyond. However, circular 
quantifications of angularity are sophisticated, and angle measure is introduced relatively early in 
curricula. Therefore, it is reasonable to question: Is it possible for students to quantify angularity in 
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other ways? Might these other quantifications support students in later constructing circular 
quantifications of angularity?  

When one discusses the measure of an angle, one is describing the size of the interior of the angle 
(Hardison, 2019). The major hypothesis investigated in the present study was that students might 
establish productive non-circular quantifications of angularity by enacting extensive quantitative 
operations on angular interiors. Extensive quantitative operations are operations that introduce units 
(Steffe, 1991). In length and area contexts, Steffe & Olive (2010) provide numerous examples of 
such operations including iteration (imagining making and uniting copies of an established unit to 
produce a composite whole) and partitioning (imagining the simultaneous production of equal-sized 
parts within an established whole). 

Methods 
The data and analyses presented in subsequent sections are drawn from a teaching experiment 

(Steffe & Thompson, 2000; Steffe & Ulrich, 2013) conducted over an academic year in the 
southeastern U.S. with four ninth-grade students. At the time of the study, all students were enrolled 
in a first-year algebra course. The overarching goal of the teaching experiment was to investigate 
how the students quantified angularity and how these quantifications changed throughout the study 
(see Hardison, 2018); the author served as teacher-researcher for all teaching sessions. Throughout 
the study, students engaged in mathematical tasks involving rotational angle models (e.g., rotating 
laser) and non-rotational angle models (e.g., hinged wooden chopsticks). Each student participated in 
13–15 video-recorded sessions, which were conducted individually or in pairs approximately once 
per week outside of their regular classroom instruction; each session was approximately 30 minutes 
in length. The records of students’ observable behaviors (e.g., talk, gestures, written responses, etc.) 
were analyzed in detail via conceptual analysis (Thompson, 2008; von Glasersfeld, 1995). In this 
report, the activities of two students, Bertin and Kacie, are foregrounded to illustrate the existence of 
non-circular quantifications of angularity and to evidence that the construction of circular 
quantifications of angularity can be supported by non-circular quantifications.  

Data and Findings 
The results in the following sections are structured around the analysis of four purposefully selected 

examples of mathematical interactions with Bertin or Kacie.  
Angular Repetition and Iteration 

To establish models for students’ ways of reasoning at the onset of the teaching experiment, 
students were asked to solve a variety of tasks. One such task involved two pairs of hinged wooden 
chopsticks: one short pair that could be freely adjusted and one long pair which was fixed. Each 
student was asked to set the short pair of chopsticks to be four times as open as the long pair of 
chopsticks. When presented with this task, Bertin proceeded by immediately tracing four adjacent 
copies of the long chopsticks on a piece of paper and setting the short pair of chopsticks to contain 
these four adjacent copies.  

I refer to Bertin’s physical actions as angular repetition. Through angular repetition, Bertin 
produced an angle model four times as open as the given angle model. Because Bertin engaged in 
angular repetition without hesitation, I infer he imagined uniting adjacent copies in visualized 
imagination prior to his physical actions. In other words, the immediacy of Bertin’s activities 
suggests an anticipation indicative of the mental operation of angular iteration. Nothing in Bertin’s 
observable activities indicated that Bertin was considering circular arcs as he solved this task; 
instead, the figurative material subjected to angular iteration was the interior of the given angle 
model. Because this task was from his initial interview, Bertin’s way of reasoning was previously 
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established and not engendered by the teacher-researcher. Thus, Bertin’s activities indicated he may 
have constructed a non-circular quantification of angularity prior to the study.  
One-Degree Angles 

Three months later, Bertin was asked how to make an angle with a measure of one degree. Bertin 
replied, “If you get a ninety-degree angle [gestures a right angle], you can divide that into nine so it 
would be like ten degrees each, and then you can divide each one of those into ten, but it would need 
something like really really small to write with.” The gesture Bertin enacted indicated he first 
brought forth a familiar angular template in visualized imagination, specifically a right angle. His 
response also indicated he had assigned this right-angle template a measure of 90°, thereby positing it 
as a composite unit. Bertin then imagined partitioning the right angle into nine 10° parts, each of 
which he subsequently partitioned into ten 1° subparts. Thus, Bertin indicated producing 90 one-
degree angles within a right angle in visualized imagination. As in the previous example, Bertin’s 
way of reasoning did not leverage circles or arcs; instead, Bertin demonstrated he had established a 
normative conception of a one-degree angle via extensive quantitative operations enacted on the 
interior of a familiar angular template.  
Contraindication of a Circular Quantification of Angularity 

Five months into the study, Bertin was presented with tasks involving central angles to determine 
whether he had constructed a circular quantification of angularity. In one task, he was asked to 
determine the measure of a central angle in degrees, given that the length of the green subtended arc 
was one inch and the green circle’s circumference was six inches (Figure 1 left). 

 

 
Figure 1: A Central Angle Task (left) and a Model of Bertin’s Solution (right) 

 
After an approximately 10-second pause, Bertin tentatively responded, “like seventy,” and 

explained that he “kind of based off of ninety degrees” as he dragged the cursor to form a right angle 
containing the given central angle. When pressed for how he might precisely determine the measure, 
Bertin indicated with the cursor that he imagined partitioning the right angle into ten-degree parts; he 
then counted how many of these parts were contained in the central angle’s interior. The green lines 
in Figure 1 (right) approximate how Bertin dragged the cursor to indicate ten-degree parts. 
Afterwards, Bertin reiterated, “it’s like around seventy somewhere.”  

Bertin’s activities indicated his reliance upon a non-circular quantification of angularity and were 
remarkably similar to his production of one-degree angles: he started with a familiar template (a right 
angle); posited this right-angle template as a 90° composite unit; and he partitioned it into nine 10° 
parts, which he leveraged to solve the task at hand. Bertin’s solution is commendable; however, 
notably absent are any reference to the given measures for the arc or circumference. Thus, Bertin’s 
activities contraindicate a circular quantification of angularity.  
Evidence That Non-Circular Quantifications Can Support the Circular Counterpart 

To illustrate that non-circular quantifications of angularity might support the construction of the 
circular counterpart, I present and analyze Kacie’s activities on a final interview task involving a 
central angle. At this point, Kacie had developed a non-circular quantification of angularity similar to 
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Bertin’s. In particular, Kacie had established the following way of reasoning: if n adjacent copies of 
an angular section exhaust a full angle, then the angle has a measure of 360°÷n. The central angle 
task from Kacie’s final interview involved determining the measure of a blue central angle 
subtending a green arc 3.47 cm long in a circle of circumference 22.83 cm. Kacie’s reasoning is 
described in the transcript, which has been edited for brevity. 

T: How would you determine the measure of the blue angle?  
K: Um, [11s pause]. You could subtract, um, the three point four seven and the twenty two point 

eighty three. And that might give you your measurement. Because that’s what that angle is like 
that – well, no. Just kidding. [16s pause]. Yeah. I guess you could subtract.  

T: And what would that subtraction tell you?  
K: Um [4s pause]. No! Wait. You could do twenty two point eight three divided by – wait, no. Yeah. 

Divided by three point four seven and that would give you the number of times the angle would 
go around the circle. And then you could do … three hundred sixty divided by that number and 
then that would give you the measurement of the angle.  

T: Can explain why that works?  
K: … well twenty two point eighty three divided by three point forty seven … would give you a 

number of how many times the green arc could go around the circle. And then that would give 
you how many times the blue angle would need to go to the circle to reach back to its starting 
point. And then if you did three hundred and sixty divided by the number of times the blue angle 
needed to go around it would give you the measurement 

Kacie used the known arc length as a unit for measuring the known circumference. She considered 
the quotient of these lengths (i.e., 22.83÷3.47) without enacting the numerical division and 
interpreted this quotient as how many times the green arc “could go around the circle.” Kacie also 
interpreted this quotient in terms of the central angle, which indicated she mentally united the arc and 
the central angle and was subjecting these united objects to the same mental operations. Having 
established the number of adjacent copies of the central angle needed to exhaust a full angle, Kacie 
relied on a previously established way of reasoning to solve the task. In short, Kacie was able to 
solve this task involving arc length by leveraging the non-circular quantification of angularity she 
had previously established. 

Discussion, Conclusions, and Implications 
Bertin and Kacie developed powerful non-circular quantifications of angularity reliant upon (a) 

establishing mental templates for familiar angles, (b) positing these familiar templates as composite 
angular units, and (c) making and measuring other angles via the application of extensive quantitative 
operations to angular interiors. These non-circular quantifications of angularity have not previously 
been identified and celebrated in empirical literature. Such quantifications are productive and should 
be recognized in classrooms and curricular standards along with circular quantifications. I 
hypothesize non-circular quantifications of angularity naturally precede, and are necessary for 
constructing, circular quantifications of angularity. Future studies are needed to investigate this 
hypothesis; however, Bertin’s spontaneous angular repetition during the initial interview and his 
description of one-degree angles evidence that non-circular quantifications can precede circular 
quantifications, and Kacie’s activities evidence that non-circular quantifications of angularity can 
support the circular counterpart. Additional research is needed to determine the prevalence of circular 
and non-circular quantifications of angularity at various grade levels. 
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