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In this study we describe the generalization and justification practices of students in a highly 
selective summer mathematics program as they explore a sequence of problems from combinatorial 
game theory. We find that while study participants readily generate examples and reason recursively 
when analyzing Nim-like two-player combinatorial games and are able to reach valid conclusions 
about winning strategies in these games, they do not readily formalize their justifications into proofs 
using mathematical induction. We describe some obstacles that we observe in the transition between 
recursive reasoning and proof by induction. 

Keywords: Advanced Mathematical Thinking, Problem Solving, Reasoning and Proof 

Research in undergraduate mathematics education has identified obstacles to students’ acquisition 
and understanding of mathematical induction as a proof strategy (e.g., Brown, 2008; Dubinsky, 1989; 
Harel & Brown, 2008; Movshovitz-Hadar, 1993) and described the understandings that 
undergraduate students, including preservice teachers, have of induction (e.g., Stylianides, 
Stylianides, & Philippou, 2007). Harel and Brown (2008) point out that in many standard 
instructional treatments of proof by mathematical induction (PMI), problems that exemplify the 
utility of the proof strategy can be categorized into recursion and non-recursion problems based on 
whether they involve recursive representations of functions or processes. The authors note that 
insistence on the use of PMI to solve non-recursion problems, in the absence of genuine intellectual 
necessity (Harel, 2013), can reinforce students’ authoritative proof schemes.  

One genre of problems that receives little attention in introduction-to-proof courses in the U.S. deals 
with combinatorial games, deterministic two-player games with perfect information (nothing 
concealed from either player). In a two-player combinatorial game with a finite set of possible game 
states that must terminate after a finite number of moves with one player winning, each game 
position can be characterized as affording a winning strategy to the next player to move (a winning 
position) or not (a losing position). The process of classifying positions in a game as winning or 
losing often involves recursive reasoning (Lannin, Barker, & Townsend, 2006), reasoning about 
cases of a problem by referencing previously established cases. This recursive reasoning can then be 
generalized to describe the set of all winning or losing positions for the game, and this reasoning can 
be distilled into a proof by mathematical induction that formally verifies and explains this 
description. We hypothesize that the genre of problems about combinatorial games offers a potential 
setting in which PMI can fulfill the explanation function of proof (De Villiers, 1990; Hanna, 2000). 
While problems involving combinatorial games have some complexity not associated with typical 
“textbook” problems, such as requiring complex induction hypotheses (incorporating assumptions 
about both winning and losing positions), we view them as possessing the exploratory nature and 
recursive structure needed to create intellectual necessity for inductive proof. 

In analyzing students’ work on problems that invite recursive reasoning about examples and 
eventually call for generalization of this reasoning, we categorize students’ generalization activities 
into result pattern generalization, in which a general insight is obtained by observing regularity in 
results of calculations, or as process pattern generalization, in which this insight is backed by an 
understanding of regularity in the processes by which these results occur (Harel, 2001). We view 
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process pattern generalization as a potential way of transitioning from recursive reasoning about 
specific cases of a problem to the development of a general inductive argument. 

Guided by this framework, we address the following question: In what ways do students engage in 
recursive reasoning and generalization as they work on problems involving two-player combinatorial 
games, and to what extent do they formalize their justifications using PMI? 

Method of Study 
We report results of a case study (Yin, 2017) of students’ collaborative work on a sequence of 

problems involving combinatorial games, with each case consisting of the mathematical discussion, 
arguments, and written and visual representations of a group of four students. The study took place in 
an informal summer mathematics program for students ages 13-18. 

We selected sixteen students in the program who reported low levels of prior familiarity with 
puzzles about Nim-like games (based on an initial questionnaire), and assigned them to four groups 
of four students each. Each group then participated in a video-recorded task-based interview lasting 
approximately an hour and a half. Each group worked collaboratively on a sequence of five tasks, 
each of which asked participants to analyze a Nim-like two-player combinatorial game. The first 
three tasks are shown in Figure 1. At the conclusion of each problem, a researcher asked the students 
to summarize and justify their conclusions orally, and asked questions as needed to clarify our 
understanding of students’ reasoning. 

 
Figure 1: The first three problems in the task sequence. 

Our analysis focuses on three groups’ work on Problems 1 through 3 (Figure 1). The three groups in 
our analysis worked on these three problems for a total of 35 minutes, 29 minutes, and 45 minutes, 
respectively. Because our study focuses on students’ generalization and justification practices, we 
transcribed the segment of each group’s work on each of Problems 2 and 3 from the first time a 
group made a generalization or conjecture about the problem to the time when their work on the 
problem ended. We then analyzed each group’s generalization processes and attempts to justify their 
conjectures, noting the degree to which each group formalized its reasoning using induction. We 
adopt the perspective that students’ justification attempts offer some evidence of what they consider 
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to be compelling arguments about winning strategies in combinatorial games, and in particular, of 
what aspects of PMI they are motivated and able to adapt to proving processes in this context. 

Results and Analysis 
In this section we provide a detailed description of one group’s work on Problems 1 through 3 and 

briefly summarize the work of the two other groups in our analysis. 
The Case of Group 1: Evidence of Process Pattern Generalization 

Group 1, consisting of Bridget, William, Grace, and Ryan, used the names “John” and “Fluffy” in 
place of the letters A and B to refer to the two players. They used tables throughout the problem 
session to represent possible sequences moves in games, and gradually began to use these tables to 
represent branching cases that could occur within the same game. 

After finding in Problem 1 that the first player can win by ensuring that the other player always 
receives a multiple of four marbles, the group moved on to Problem 2 and began categorizing 
possible starting positions as winning or losing for Player A. In the group’s initial work on this 
problem, after identifying some examples of initial positions that are winning for Player A, Grace 
stated the conjecture, “So it’s like -- basically, all the numbers except for the multiples of 4, because 
in that case, Fluffy would win.” We interpret this as result pattern generalization, since Grace 
appeared to obtain this insight from a table of cases the group had considered, and because the group 
had not publicly justified all of its previous claims about winning positions for the first player. 

The group chose to continue considering specific examples to gather evidence for this conjecture. 
Ultimately, the group returned to its conjecture and finalized it by writing it on the board: “if N ≡ 1, 
2, or 3 (mod 4), then Player A will win (by generalization of P1). If N ≡ 0 (mod 4), then Player B 
will win.” The group then debated whether to provide a written proof of this conjecture; while 
William remarked that “If we wanted to prove that, we could probably use induction or something,” 
Grace indicated that this was not needed since they had already explained that their conjecture was 
true “by generalization of the first problem.” We interpret this segment of discussion as indicating 
that the group saw an opportunity to formalize their argument using mathematical induction, but 
found such formalization to be unnecessary in this case, possibly because of the similarity between 
the reasoning used in Problem 2 and that used for the more specific Problem 1. We hypothesize that 
Problem 2 did not create intellectual necessity for PMI for this group; a proof by induction would not 
have done more to convince this group that their conjecture was universally valid. 

On Problem 3, after testing the cases N ≤ 12, the group correctly conjectured that Player A has a 
winning strategy if and only if N is not divisible by 3. The group then went on to write an argument 
justifying this conjecture: 

If 3 [does not divide] N, then Player A will win. If 3 [does not divide] N, then N ≡ 1 or 2 
(mod 3), so Player A can leave Player B w/ a multiple of 3. If Player B has a multiple of 3, 
then B can only remove 1 mod 3 or 2 mod 3 marbles, leaving A w/ 1 mod 3 or 2 mod 3 
marbles, so A can win. 

Prior to the group’s production of this argument, William had stated that each power of 2 is 
congruent to 1 or 2 modulo 3; this allowed the group to reason that if Player B receives a multiple of 
three marbles, then any move by Player B will reduce the number of marbles to a non-multiple of 3. 
In this argument we see evidence of process pattern generalization based on the group’s work on 
specific examples: both the insight that a power of 2 cannot be a multiple of 3 (and that this is 
important in limiting what a player can do if given a multiple of 3), and the strategy of reducing the 
number of marbles to a multiple of 3. However, the argument as written does not explain why “A can 
win” after receiving a smaller number of marbles congruent to 1 or 2 modulo 3 (and one can envision 
this smaller number being outside of the range of specific examples that the group tested directly). 
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The Cases of Groups 2 and 3: Obstacles to Process Pattern Generalization 
Like Group 1, Groups 2 and 3 correctly determined that in Problem 2, Player A has a winning 

strategy if and only if N is not a multiple of 4. Neither group used induction to ground claims that a 
first move for Player A would place Player B in a losing position; they instead referenced their prior 
work on Problem 1 and examples they explored in Problem 2. We hypothesize that the regularity of 
winning and losing positions in Problem 2 led both groups to the belief that a formal proof by 
induction was not essential for justification of their conjecture. 

While both Groups 2 and 3, like Group 1, arrived at a correct answer to Problem 3, their attempts at 
justification differed significantly. In attempting to show in general that a multiple of 3 would be a 
losing position in this game, Group 2 did not take into account possible moves for the next player 
other than taking 1 or 2 marbles, even though they did account for other possible powers of 2 in the 
preliminary example work that led to their conjecture. Therefore, while Group 2 was able to render a 
partial explanation of how Player A could seize a winning strategy by taking 1 or 2 marbles if N is 
not a multiple of 3, their argument did not fully demonstrate that this first move would put Player B 
in a losing position. Group 3 attempted to prove its conjecture for Problem 3 using PMI, but in doing 
so, they attempted to establish values of N as winning or losing positions by proving the false claim 
that an integer N can be written as either a sum of an even number of powers of 2 or the sum of an 
odd number of powers of 2, but not both. They embarked upon this strategy despite the fact that 
expressing an integer as a sum of powers of 2 had not been a key part of their reasoning about 
specific examples that led to their conjecture. 

Discussion and Implications 
The results of our interviews are not necessarily indicative of students’ ability to use PMI to 

generalize and formalize recursive reasoning. We did not require students to produce formal proofs 
during the interviews, so any attempts to use induction or other proof techniques reflected students’ 
desire to confirm or formalize a result, or their sense that we wished for them to do so. In a future 
study we hope to ask groups of students to work on the same sequence of problems in one task-based 
interview, then ask them in another interview to write formal proofs of their results. 

Nonetheless, we claim that observing students’ work on combinatorial game problems provides 
useful insight about obstacles that may hinder students’ efforts to make the cross-cultural translation 
between the empirical and recursive reasoning that often occurs naturally in exploratory 
mathematical activity, and the formal inductive justification accepted by the mathematics discipline. 
First, regularity in the structure of a problem may eliminate intellectual necessity for formal proof by 
induction. Second, our preliminary results suggest that students may have difficulty translating the 
recursive reasoning used in specific examples into a proof by induction; and in fact, they may use 
reasoning disanalogous to their prior reasoning when attempting a proof by induction. Finally, when 
students do successfully transfer their recursive reasoning into an induction argument, some work 
may be needed to impress upon students a sense of the importance of a base case, and the function of 
the structure of an induction proof in providing a foundation on which higher-order cases can rest on 
lower-order cases. 
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