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This study investigates the extent to which pre-service elementary teachers (PETs) use their 
contextual knowledge to model and solve eight problems for which the result of the arithmetic 
operation is problematic, if one takes into consideration the reality of the context. A paper-and-
pencil test was administered to 621 PETs enrolled in mathematics content courses. The test included 
eight experimental items and four buffer items. The findings for a sample of 97 PETs are not very 
encouraging. The total number of realistic responses varied from 5 to 80 (out of 97 possible for each 
problem). Overall, the percentage of realistic responses on the eight problematic items was only 
about 31%. 

Arithmetic word problems play an important role in learning mathematics at the elementary school 
level. There are several practical and theoretical reasons of the inclusion of arithmetic word problems 
in the elementary curriculum. First, they provide contexts in which students can use their 
mathematical knowledge so they can develop their problem-solving abilities, an important goal of 
learning mathematics. Second, word problems provide practice so students can develop their abilities 
to use their knowledge in real-life situations. Third, word problems serve as motivators so students 
can see the relevance of the procedures and algorithms learned in school. Fourth, word problems 
have the potential to provide students with rich contexts and realistic activities in which to ground 
mathematical concepts and, thus, facilitate the learning of more complex concepts. Finally, word 
problems provide students with experiences to learn how to use mathematical tools to model aspects 
of reality, that is, to describe, analyze, and predict the behavior of systems in the real world 
(Burkhardt, 1994; De Corte, Greer, & Verschaffel, 1996; Verschaffel, Greer, & De Corte, 2000; 
Verschaffel & De Corte, 1997). 

Some critiques (e.g., Gerofsky, 1996; Lave, 1992; Nesher, 1980) argue, however, that the 
mathematics curriculum fails to achieve these lofty goals because traditional instructional tasks tend 
to focus on a straightforward application of procedures and computations to solve artificial problems 
unrelated to the real world. As a result, students tend to approach word problems, more often than 
desirable, in a superficial and mindless way with little, if any, disposition, to modeling and realistic 
interpretation.  Several pieces of research provide empirical evidence to these claims (Davis, 1989; 
De Corte & Verschaffel, 1989; Greer, 1993, 1997; Reusser, 1988; Reusser & Stebler, 1997; 
Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993; Verschaffel, 1999; Verschaffel & De Corte, 
1997; Verschaffel, De Corte, & Lasure, 1994).  

Purpose of the Study 
The purpose of the study was to examine prospective elementary teachers’ (PETs) reactions and 

responses to problematic arithmetic word problems for which the solution is not the result of 
application of the most obvious arithmetic operation suggested by the two numbers given in the 
problem statement. 

As suggested by the research literature, elementary school children tend to ignore the realistic 
constrains of the context embedded in the statement of the problem, a phenomenon that Schoenfeld 
(1991) coined “suspension of sense-making.” Several critics and researchers argue that children’ 
suspension of sense-making is the result of school practices (Davis, 1989; Greer, 1993; Nesher, 1980; 
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Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993). To develop children’ disposition to realistic 
modeling, we must change curriculum and instructional tasks.  Since the teacher has an important 
role in the construction or selection of learning tasks and opportunities, one may argue that 
researchers and curriculum developers need to understand teachers’ reactions and responses to 
problematic problems. 

Theoretical and Empirical Background 
Mathematical modeling is the process of representing aspects of reality by mathematical means. In 

particular, the solution of some physical or real-world problems requires some form of 
mathematization. That is, the construction of a mathematical model. The complexity of the process of 
mathematization depends, of course, on the nature of the problem. There are several proposed models 
of representing reality by mathematical means (e.g., Silver, Shapiro, & Deutsch, 1993; Verschaffel, 
Greer, & De Corte, 2000), but Silver et al’s model (Fig. 1) suffices for our purposes. 

According to Silver, Shapiro, and Deutsch’s model, a simplified version of the process of 
mathematical modeling consists of four different stages: understanding of the problem, construction 
of a model or selection of a mathematical procedure, the execution of the procedure, and the 
interpretation or evaluation of the outcomes of the procedure.  

 

 
Figure 1: Silver et al.’s (1993) Referential-and-Semantic-Processing Model for Successful Solutions 

The first stage of the process of mathematical modeling involves understanding the problem 
situation embedded in the story text. That is, we need to understand the given or known facts, the 
unknown information, the superfluous data, and missing information. The second phase involves the 
construction of a mathematical model or selection of a suitable procedure, operation, or algorithm 
whose outcome will lead us to the solution of the problem. To perform the second stage of the 
modeling process successfully, we must understand the mathematical structure of the problem. That 
is, we must understand the interconnections or relationships among the different types of information 
related to the solution of the word problem. The third stage of the problem involves mainly 
performing the computation, procedure, or algorithm either with paper and pencil or using a 
computational device. Finally, we should interpret and assess the outcome of the mathematical 
procedure in terms of the realistic context embedded in the story text of the word problem or in terms 
of the real-world story situation. It is during this step that we need to focus on the meaning of the 
result of the mathematical model so we can establish the connection between the outcome of the 
computation and the solution to the real-world story problem. It is during this stage that we need to 
assess whether our modeling assumptions are realistic or reasonable. 

Story text Story situation

Mathematical model

Computation
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Silver, Shapiro, and Deutsch’s model implies that there are three main potential sources of error 
when solving word problems: lack of understanding of the mathematical structure of the problem, 
which leads students to select an inappropriate procedure, executing the procedure incorrectly, and 
failing to interpret or assess the result of the procedure in terms of contextual or everyday-life 
knowledge. Silver, Shapiro, and Deutsch (1993) examined 195 middle grade students’ solution 
processes and their interpretation of solutions to the following problem: 

The Clearview Little League is going to a Pirates game. There are 540 people, including 
players, coaches, and parents. They will travel by bus, and each bus holds 40 people. How 
many buses will they need to get to the game? 

Their analysis revealed that 91% of the students selected an appropriate procedure (e.g., long 
division, repeated multiples, repeated additions, etc.), but only 61% of these students performed it 
flawlessly (about 56% of the total number of students). Overall, the researchers found that only 43% 
of the total number of students gave the correct answer (14) to the problem. However, some of these 
students provided inappropriate interpretations or justifications. For example, one student wrote “14 
buses because there's leftover people and if you add a zero you will get 130 buses so you sort of had 
to estimate. Are we allowed to add zeros?" (p. 124-125). The researchers also reported that about 
55% of the students did not get the correct answer because either they did not properly interpret the 
outcome of the computation or executed incorrectly the procedure. These computational mistakes 
could have been prevented if students had interpreted their solutions appropriately. Silver, Shapiro, 
and Deutsch proposed the model displayed in Figure 2 as a graphical representation of unsuccessful 
solutions that are due to a failure to connect the outcome of the procedure to the real-world context 
embedded in the story problem. 

 

 
Figure 2: Silver et al.'s (1993) Referential-and-Semantic-Processing Model for Unsuccessful 

Solutions 

Other pieces of research have amply documented elementary school children’ improper modeling 
assumptions when solving problematic arithmetic word problems. Some further examples of the 
word problems that students have been asked to solve are the following:  

1. What will be the temperature of water in a container if you pour 1 liter of water at 80° and 1 
liter of water of 40° into it? (Nesher, 1980) 

2. John's best time to run 100 m is 17 sec. How long will it take to run 1 km? (Greer, 1993) 
3. Lida is making muffins that require 3/8 of a cup of flour each. If she has 10 cups of flour, 

how many muffins can Lida make? (Contreras & Martínez-Cruz, 2001) 
4. In September 1995 the city's youth orchestra had its first concert. In what year will the 

orchestra have its fifth concert if it holds one concert every year? (Verschaffel, De Corte, & 
Vierstraete, 1999) 

Computation

Mathematical model

Story situationStory text
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In their study with 75 fifth graders in Flanders, Verschaffel, De Corte, and Lasure (1994) reported 
that only seven (9%) students provided a realistic and correct response to the temperature problem. 
Similarly, in the same study, these researchers found that only two (3%) responses included realistic 
answers or reactions to the running problem. In another study, Contreras and Martínez-Cruz (2001) 
focused on prospective elementary teachers’ solution processes and realistic reactions to the third 
problem. Their analysis revealed that only 19 (28%) of the participants’ responses contained a 
realistic solution to the problem, but none of the participants made any comments about the 
problematic nature of the problem.  

Verschaffel, De Corte, and Vierstraete (1999) addressed upper elementary school children’ 
difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. 
The participants were administered a paper-and-pencil test consisting of 17 word problems, nine of 
which were experimental items and eight buffer items. The result of the straightforward arithmetic 
operation yields the correct answer for three of the nine experimental items. An example of such a 
problem is “In January 1995 a youth orchestra was set up in our city. In what year will the orchestra 
have its fifth anniversary? However, the solution of the remaining six experimental items is either 1 
more or 1 less that the result of the straightforward arithmetic operation of the two given numbers. 
An example of such a problem is problem 4 stated above. Overall, the researchers found that the 
percentage of correct responses for each of the six problematic items was less that 25%. An error 
analysis revealed that 83% of the errors made on these problems were ± errors. In other words, most 
of the children’ errors were due to their interpretation that the result of the addition or subtraction of 
the two given numbers yielded the correct answer.  

Although research has convincingly documented elementary school children’ strong tendency to 
model problematic problem unrealistically, the generalizability of the findings to more mature 
students, such as prospective elementary teachers, has not been sufficiently investigated. On one 
hand, since PETs have had even more experiences with traditional school problems, we may argue 
that there is no reason to expect that prospective elementary teachers would use their contextual 
knowledge and realistic considerations in their solution processes of problematic word problems. On 
the other hand, we may claim that PETs may have faced real-world problem situations outside school 
more often than young children and, having a more developed mathematical knowledge, have a 
stronger disposition to activate their contextual knowledge when confronted with problematic 
problems whose realistic solutions require taking into consideration contextual knowledge. 

In their 1997 study, Verschaffel, De Corte, and Borghart examined future teachers’ responses to 
seven problematic word problems. The problems were problematic in the sense that they cannot be 
appropriately modeled and solved by the straightforward application of the suggested arithmetic 
operation with the two numbers given in the problem statement. The researchers found that the future 
teachers had a strong tendency to ignore contextual knowledge and realistic considerations when 
modeling and solving the problematic word problems. In fact, the researchers reported that only 48% 
of all the responses to the problematic problems could be rated as realistic. 

Even thought Verschaffel, De Corte, and Borghart’s findings provide some insights into prospective 
teachers’ use of realistic considerations when confronted with problematic word problems, more 
research is needed to provide a more complete picture about this research area, particularly across 
different cultures. In the present study, I focus on the extent to which the findings from previous 
research with pupils and future teachers are generalizable to prospective elementary teachers in the 
USA. 

Methods and Sources of Evidence 
The total sample of participants consists of 621 PETs enrolled in different sections of mathematics 

content courses for elementary teachers at two State Universities in the United States. The present 
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paper reports the results of three groups (97 PETs) for which the analysis has been completed. The 
PETs had not been previously engaged in any intentional or systematic modeling activities or tasks. 

A paper-and-pencil test consisting of eight experimental items and four buffer items was 
administered to the PETs during regular class instruction. The eight experimental items (Table 1) 
were problematic in the sense that the outcomes of the arithmetic operations performed with the 
given numbers in the problem story does not provide the answer to the problem, if one takes into 
consideration the real-world situation embedded in the contextual problem story. The buffer items, 
on the other hand, were standard routine problems whose solution is the straightforward result of the 
operation performed with the given numbers. The experimental items were adapted from Verschaffel 
and De Corte’s (1997) study. An example of a buffer item is “Joel is building a collection of 175 
different stamps. He has already collected 107 different stamps. How many more stamps does he 
need to complete the collection?” 

 
Table 1: The Eight Experimental Items 

1. 1175 supporters must be bused to the soccer stadium. Each bus can hold 40 supporters. How many buses are 
needed? (Carpenter, Lindquist, Matthews & Silver, 1983).  
2. 228 tourists want to enjoy a panoramic view from the top of a high building that can be accessed by elevator only. 
The building has only one elevator with a maximum capacity of 16 persons. How many times must the elevator 
ascend to get all the tourists on the top of the building? Verschaffel, 1995) 
3. At the end of the school year, 50 elementary school children try to obtain their athletics diploma. To receive the 
athletic diploma they have to succeed in two tests: running 400 m in less than 2 minutes and jumping 0.5 m high. All 
the children participated in both tests. Nine children failed the running test and 12 failed the jumping test. How 
many children did not receive their diplomas? (Verschaffel, 1995) 
4. Carl and George are classmates. Carl has 9 friends that he wants to invite to his birthday party. On the other side, 
George has 12 friends that he wants to invite to his birthday party. Since Carl and George have the same birthday, 
they decide to give a party together. They invite all of their friends. All their friends come to the party. How many 
friends are there at the party? (Nelissen, 1987)  
5. A man wants to have a rope long enough to stretch between two poles 12 m apart, but he has only pieces of rope 
1.5 m long. How many of these pieces would he need to tie together to stretch between the poles? (Greer, 1993) 
6. Steve has bought 12 planks of 2.5m each. How many 1 m planks can he saw out of these planks? (Kaalen, 1992)  
7. Sven's best time to swim the 50 m breaststroke is 54 seconds. How long will it take him to swim the 200 m 
breaststroke? (Greer, 1993)   
8. The flask is being filled from a tap at a constant rate. If the water is 4 cm deep after 10 seconds, how deep will it 
be after 30 seconds? (This problem was accompanied by a picture of a cone-shaped flask) (Greer, 1993)  
After each problem, I have indicated its original source; however, in some cases the numbers were replaced by 
others.  

 
Students’ written responses to the problems were the source of data. Written directions asked 

students to show all their work to support each of their answers and to write down any questions or 
concerns they may have about each problem. I recognize that written responses have some intrinsic 
limitations when compared to verbal protocols. However, written protocols allow researchers to 
collect data from large samples. Moreover, some researchers (Hall, Kibler, Wenger, & Truxaw, 
1989) have validated the use of written responses to infer cognitive processes. 

Analysis and Results 
Each response to problems 1 and 2 was coded as correct or incorrect. Each response to problems 3-8 

was coded as correct, partially correct, or incorrect. Two raters judged every response. A response 
was judged as correct if it included a realistic numerical answer that estimated or indicated the range 
of possible solutions and took into account the contextual restraints of the real-world problem 
situation. A response was judged partially correct if it was incomplete or wrong but included a 
realistic comment suggesting that the student displayed awareness of the contextual restraints of the 
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real-world problem situation. A response was judged incorrect when it did not suggest any awareness 
of the contextual restraints of the real-world problem situation. The inter-rater agreement was 99.7%. 
Table 2 summarizes the results of the analysis. 

 
Table 2: The Number and Percentage of Correct, Partially Correct, and Correct Responses for the 

8 Experimental Items 
Problem Number and percent of 

correct responses 
Number and percent of 

partially correct responses 
Number and percent of 

incorrect responses 
1 76 (78.5%) 0 (0%) 21 (21.5%) 
2 80 (82.5%) 0 (0%) 17 (17.5%) 
3 3 (3%) 16 (16.5%) 78 (80.5%) 
4 3 (3% 17 (17.5%) 77 (79.5%) 
5 2 (2%) 4 (4%) 91 (94%) 
6 24 (24.5%) 1 (1%) 72 (74%) 
7 1 (1%) 4 (4%) 92 (95%) 
8 0 (0%) 6 (6%) 91 (94%) 

Total  189 (24.5%)  48 (6%) 539 (69.5%) 
Subtotal 33 (5.5%) 48 (8%)  501 (86%) 

 
As shown in Table 2, PETs’ performance on most items was alarmingly poor: The percentage of 

incorrect responses ranged from a high 95% for item 7 to 17.5% for item 2. Overall, the percentage 
of realistic responses (correct responses and partially correct responses) on the eight problematic 
items was only about 30.5%. We should notice, however, that the number of realistic responses was 
considerable greater for the division problems involving remainders, problems 1 and 2. If we exclude 
these two problems from the analysis, then the percentage of realistic responses for the remaining six 
problems is only about 14%.  

Discussion and Conclusion 
The purpose of the present study was to collect systematically empirical data about the extent to 

which prospective elementary teachers in the USA activate their contextual knowledge when solving 
problems whose solution in not the direct result of an arithmetic operation. Using similar problems 
and methodology as previous studies (e.g., Verschaffel & De Corte, 1997; Verschaffel, De Corte, & 
Lasure, 1994), a test consisting of eight problematic items and four standard problems was 
administered to a sample of 621 PETs. The analysis has been completed for 97 PETs (three groups) 
and it is reported in the present article. 

Although previous studies have convincingly demonstrated children’ strong tendency to ignore the 
contextual realities embedded in the story of the problem situation, I was hoping that the findings 
with prospective elementary teachers would be much more encouraging. After all, prospective 
elementary teachers are part of a more mature and experienced population and it is reasonable to 
assume that they have an understanding of the contextual knowledge needed to realistically solve the 
problems. Therefore, the question of PETs’ failure to activate this contextual knowledge needs to be 
further discussed and investigated. I offer several tentative hypotheses to explain PETs’ lack of 
disposition to model contextual word problems realistically. 

First, children and PETs’ lack of activation of their contextual knowledge may be due to their 
constant exposure to traditional and stereotypical school word problems. If this is the case, then this 
tendency may remain constant or get stronger with additional years of immersion in the mathematical 
culture of traditional classrooms. Future research is needed to better understand the effects of 
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traditional learning environments on students’, including PETs, failure to activate their contextual 
knowledge to solve problematic problems. 

A second possible explanation to understand PETs’ tendency to ignore the contextual realities of the 
situation embedded in the problem story is that they lack enough real-world knowledge of the 
situational context of the problematic problems. Even though this seems unlikely, follow-up studies 
should provide empirical data to confirm or refute this hypothesis. 

A third explanation may be that PETs approached the problematic problems in an automatic way 
thinking that they were standard mathematical problems without reflecting on the contextual realities 
of the problem. Further research is needed to better understand PETs’ suspension of sense-making 
when solving these types of problems. 

In conclusion, this study provides, at the very least, some empirical evidence that PETs in the USA 
lack an initial disposition or reaction to consider the contextual restraints of problems grounded in the 
real world. Further research is needed to better understand PETs’ apparent suspension of sense-
making when engaged in solving problems that require realistic interpretations. 
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