
Plenary	Lectures	

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

69	

REFLECTIONS ON DIGITAL TECHNOLOGIES IN MATHEMATICS EDUCATION 
ACROSS CULTURES 

Celia Hoyles 
UCL Institute of Education, UK 

c.hoyles@ucl.ac.uk 

Carolyn Kieran 
Professor Emerita, Université 

du Québec à Montréal, Canada 
kieran.carolyn@uqam.ca 

Teresa Rojano 
Center of Research and 

Advanced Studies (Cinvestav), 
Mexico 

trojano@cinvestav.mx 

Ana Isabel Sacristán 
Center of Research and Advanced Studies 

(Cinvestav), Mexico 
asacrist@cinvestav.mx 

María Trigueros 
Instituto Tecnológico Autónomo de México 

(ITAM), México 
trigue@itam.mx 

In this plenary presentation paper, we reflect on issues related to the role, potential and extent of 
integration of digital technologies in mathematics education, and attempt to give our perspectives on 
these issues from across cultures and over time stretching over the past four decades. Three experts, 
from three different countries, give their reflections on how mathematics teaching and learning has 
changed and developed since digital technologies were introduced in schools. Their individual 
narratives are then complemented by a discussion of the differences in adaptation to the constant 
changes in technology, changes that arise from diverse socioeconomic, political and cultural visions 
of the role of digital technologies and their influence and on how the potential of these technologies 
can actually be harnessed.   
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Introduction, by Ana Isabel Sacristán and María Trigueros  
For this plenary presentation, we invited three renowned experts on the integration of digital 

technologies in mathematics education: Celia Hoyles from the UK, Carolyn Kieran from Canada, and 
Teresa Rojano from Mexico. We asked each of them to reflect on what has happened with the roles 
and potentials of digital technologies in mathematics education since their adoption in school 
systems, in order to develop a perspective of this topic across cultures and countries.   

This paper presents their contributions complemented by our own reflections. The next sections 
present the experts’ contributions. First, Hoyles presents a reflection on how mathematics teaching 
and learning has changed and developed since digital technologies in general and programming, in 
particular, were introduced into school mathematics education, specifically in England. Then Kieran, 
through the lens of the Canadian experience, presents a discussion of how issues related to the 
emergence of new technologies and the restrictions involved in their use by teachers in their 
classrooms created conditions that privilege some approaches; she also presents an interesting 
discussion on how computational thinking relates to mathematical practice and thinking. In the next 
section, Rojano begins by discussing some results of an Anglo-Mexican project that highlighted 
some differences in the use of technologies for algebra, then describes some national projects 
developed in Mexico, and how economic and political circumstances had an impact on their 
possibilities of generalization and success.    
We finish by including our own reflections, based on their visions, on how digital technologies have 
played an important role in mathematics education and on how different cultural and economical 
conditions have a strong influence on how the potential of these technologies can actually be 
harnessed.    
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Reflections on the Role of Digital Technologies in Mathematics Education: insights from 
the past and ongoing research, by Celia Hoyles  

The invitation to make this contribution at PME-NA has provoked me to look back on about 30 years 
of research in the area of digital technologies and mathematics education, in general and in particular 
around programming. My passion is and has been to help learners open windows to mathematical 
knowledge by using digital technologies in innovative, future-oriented and intellectually rigorous 
ways (Hoyles, 2018).  This passion I have shared with Richard Noss with whom I have worked on 
numerous research projects over the years.  The research questions we have posed, the technologies 
designed, and the research methods employed have all reflected this desire to widen access to 
learning through digital technology and to tease out the conditions necessary for this to happen 
successfully. Mathematics is central to the school curriculum, yet all too often mathematics does not 
engage learners who do not discern the point of the mathematics they are forced to learn. This is 
important at the individual level, but at the same time, the technology-based ‘information society’ 
needs model-based reasoners who can exploit mathematical ways of thinking to make sense of their 
world.  This has become ever more apparent at the time of writing this paper when the world is 
enduring a global pandemic where  everybody is assailed by data and graphs of the numbers infected 
by Covid 19. These representations and the models that generate them need to be interpreted.  Thus 
we need to take seriously the design challenge to engage our students in school in mathematical 
thinking and application which as far as is possible is actually needed for them to achieve the goals 
that they find compelling.   
Background 

My work has been grounded in constructionism originating from the vision of Seymour Papert  
(Papert, 1980a), which asserts that one way to achieve sense-making for learners was for them to 
take the role (to some extent at least) of producers rather than consumers of digital tools, so they are 
better able to explain the effects of the tools (see for some example Confrey et al., 2009, p. 19). Our 
approach originated with a Piagetian basis but evolved to embrace  “a hybrid social 
constructivist/sociocultural approach… with a vision of human–machine interaction and design for 
mathematical activity” (Monaghan, Trouche and Borwein, 2016, p. 10). In my view, fundamental to 
constructionism are two notions: epistemological pluralism, that is accepting the validity of multiple 
ways of knowing and thinking (following Turkle and Papert, 1992) and designing for interaction in 
microworlds. 

I make a small diversion to give the reader a glimpse of the challenge Seymour Papert set us many 
years ago on this first issue of epistemological pluralism.  As a member of a plenary panel at a 
conference in Newcastle, Australia, to commemorate the work of Jon Borwein, I was tasked to 
address the new ways people think, move and feel mathematically, thanks to the opportunities 
offered by digital technologies: the abstract went on to state:  

…the emergence of new digital technologies and new theories have helped researchers 
recognise the breadth and depth of that change and simultaneously provide a framework for 
the design and implementation of computational tools for learning mathematics. The 
possibility of putting mathematical objects into motion, for example, fundamentally changes 
the nature of these objects, how they are perceived and reasoned about; moving these objects 
changes the bodily actions and gestures of both learners and teachers; making the objects 
transform, collide and overlap, changes the stories that can be told about them. Research on 
the use of digital technology has also provided an extraordinary ‘window’ on mathematical 
meaning making, to use the metaphor provided by Celia Hoyles and Richard Noss, in part 
because of the visibility of thought, motion and feeling enabled in expressive digital 
technology environments. (Drijvers et al., 2016). 
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The example I gave at the panel was stimulated by Papert’s keynote at 10th conference of PME in 
London way back in 1986 that I simply mention here to provoke the reader. Papert talked about what 
is generally known as the “alternate segment theorem” (p. 3) and argued how simple it was if only 
one thought of oneself in the motion and then “it is easy to see the total turn of a circular arc is the 
same as the angle at the centre of the circle”(end of second paragraph, Papert 1986, p. 3). 
And what about microworlds? In Hoyles (1993), I described the evolution of the microworld idea 
from its genesis in the artificial intelligence community, in which it was used to describe a relatively 
simple and constrained domain where computational systems could solve problems, to a more 
broadly conceived environment that served as a concrete embodiment of a knowledge domain or 
structure. The structure comprises tools that are extensible (so tools and objects can be combined to 
build new ones), but also transparent so their workings are visible, and rich in different 
representations. There is a duality here: a successful microworld is both an epistemological and an 
emotional universe, a place where powerful mathematical ideas can be explored; but explored “‘in 
safety”’, acting as an incubator both in the sense of fostering conceptual growth, and a place where it 
is safe to make mistakes and show ignorance. And, centrally these days, it is a place where ideas can 
be effortlessly shared, remixed and improved (for an earlier discussion of these twin aspects of 
engaging through building and sharing, see Noss and Hoyles, 2006). 
Programming and Mathematics 

Now let us fast-forward to 2014 where, at least in England, programming or coding is widespread 
and moreover part of a compulsory curriculum for all students from age 6 to 16 years. It is important 
to recall now that teaching of computer programming is not new, with educational programming 
languages such as Logo and BASIC widely used in both primary and secondary education settings 
during the 1980s and 90s.  However, Manches and Plowman (2015) highlighted that recent 
discussion around how to teach programming in schools often omitted the earlier research conducted 
during this time: some of which are reported in Hoyles and Noss (1992).  We need to learn from 
these earlier studies. Research on the efficacy of programming had in fact produced mixed results 
(Clements, 1999; Voogt et al., 2015). From the point of view of learning programming per se, some 
of the key challenges identified were difficulties with programming syntax, dealing with error 
messages along with the severely limited access to technology within the classroom (Resnick et al., 
2009; Lewis, 2010). Since then there have been hugely significant developments in novice 
programming languages that have overcome many of these challenges (though maybe raised others), 
and technology access has become increasingly commonplace within schools with resources readily 
available for sharing through the Web. 

When computing became mandatory in English schools in 20141, the time was ripe to revisit 
research on the impact of programming on mathematics learning taking account of the new context 
and critically learning from the past that had shown the importance of design of microworlds and 
critical need to take account of the teacher’s role. Richard Noss and I then embarked on a new 
research project, the ScratchMaths (SM) project, which set out to explore the potential of 
programming for the 9–11 primary1 age group (upper Key Stage 2 (KS2)) in light of the curriculum 
changes and the renewed enthusiasm and motivation for the teaching of programming in schools. The 
project consists of a design phase following which the intervention comprising detailed computer 
tools and curriculum materials is implemented over 2 years with the same pupils. Some factors that 
contributed to Logo and other early programming initiatives not fulfilling their potential have been 
mentioned earlier, but a key factor being identified by Noss and Hoyles (1996) as the importance of 

                                                             
1 During the late 1990s programming faded from the English curriculum and became subsumed and eventually 
replaced entirely by the subject of ICT (Information and Communications Technology), which focused more on the 
use of technology than on its creation (Brown et al., 2014).   
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fostering a sense of teacher understanding and ownership of any programming innovation. In 
addition, there have been significant technological developments since this early teaching of 
computer programming, with a number of block-based languages such as Scratch now freely 
available and widely used. These environments have helped to address some of the difficulties of 
mastering programming syntax, but there remains the challenge of ensuring that teachers first 
appreciate why they are introducing programming as part of mathematics – and then have 
opportunities to develop appropriate skills to teach programming. 

The ScratchMaths (SM) designed a 2-year intervention aiming to develop the mathematical 
knowledge of pupils (aged 9-11 years) through programming. The SM approach was to select and 
design activities around core computational ideas that would then be used as vehicles to explore 
specific mathematical concepts and promote mathematical reasoning. This approach enables parts of 
computing to be taught within or as a supplement to mathematics lessons. For a summary of the SM 
design research phases, activities and outcomes see (see Benton, Hoyles, Kalas & Noss, 2017, for a 
detailed account of the design of the study). The SM content was divided into six modules, or in 
terms for this paper, microworlds, three per year.  In the first year for 9-10 year-old students, 
computational concepts (see for example, Wing, 2006) were foregrounded with mathematical ideas 
more implicit in microworlds titled Tiling Patterns, Beetle Geometry and Collaborating Sprites. In 
the second year, the same students (now 10-11 years old) were introduced to mathematical concepts 
and mathematical reasoning explicitly through a programming approach along with a set of new 
computational concepts in microworlds titled Building with Numbers, Exploring Mathematical 
Relationships, and Coordinates and Geometry. SM was intended to comprise approximately 20 hours 
teaching time across each of these two school years.  

Given the challenge of implementing a new curriculum, the SM teachers were provided detailed 
guidance for navigation through support materials, which were themselves carefully structured and 
progressive. Prior to teaching each year of the SM intervention, teachers were offered two full days 
of professional development, spaced a few months apart. During these sessions, the teachers were 
introduced to Scratch and the SM curriculum content. The SM design was framed by constructionist 
theory whereby pupils would engage with the mathematical ideas by building programs to explore so 
the PD followed this approach (see Noss & Hoyles, 2017, 2019). It was then intended that this 
constructionist approach would be operationalized in the classroom through what we called the ‘5Es 
pedagogical framework’ with teachers given the opportunity to participate in activities that 
incorporated exemplars of the different pedagogical strategies. The five unordered constructs of the 
framework are summarised below: 

Explore: Pupils should have opportunities to explore different ways of dealing with constraints and 
ambiguity as well as investigating their own and others’ ideas and debugging different types of 
errors.  

Explain: Pupils should have opportunities to explain their own ideas as well as answer and discuss 
reflective questions from the teacher and peers.  

Envisage: Pupils should predict outcomes of their own and others’ programs with specific goals 
prior to testing out on the computer.  

Exchange: Pupils should have opportunities to share and build on others’ ideas as well as justify 
their own solutions. 

bridgE: Pupils should be helped to make links between contexts beyond the Scratch programming 
environment by explicit re-contextualization and reconstruction within the language of mathematics, 
by for example unplugged activities.  

The SM intervention was subject to cycles of iterative design research following which it was 
scaled out across England. The project was also evaluated through a randomised control trial 
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conducted by another university (Boylan et al., 20182). For the trial, 111 English primary schools 
(6300 pupils) were recruited and randomly assigned to control and treatment groups with the final 
quantitative outcome measures based on scores in first a test of computational thinking (designed by 
the evaluation team) to be applied in the first year of the evaluation, and second, scores on national 
standardised mathematics tests taken by all students at the end of primary school.  
For completeness, I summarise the findings of the external evaluation of SM, which reported:  

• a positive and significant impact on Y5 Computational Thinking skills, which was 
•  particularly evident among disadvantaged pupils that is those who had or currently have free 

school meals  
• with no difference between girls and boys 

•  no evidence of impact on the national Key Stage 2 Maths test  
Clearly what is interesting in these outcomes for researchers is to seek to explain the reasons for 

these outcomes. To be honest we are not sure and welcome research replications and adaptations that 
are underway, which throw light on these issues. I note for example the nationwide large scale study 
in Spain (INTEF, n.d.), which reported the following: “…the results show that it is possible to 
include programming activities in 5th grade in the area of mathematics, so that students not only 
learn to program and engage in computational thinking, but also improve the development of their 
mathematical competence greater than their colleagues who have worked in this same area using 
other types of activities and resources not related to programming."  

Here I simply mention what I see as important contextual influences in England that might well 
have shaped the outcomes.  First, why the significant positive effect of the SM intervention on CT 
scores as measured by the test used at the end of the first year of the trial.  We cannot be certain, but 
simply point to the fact that the SM package is a systematic, progressive research-based curriculum 
that offers detailed support to teachers. The independent evaluators also remarked that SM was 
popular among the teachers who sustained their participation.  Our surveys told us that fidelity to SM 
in terms of engagement in professional development, provision of SM curriculum time and coverage 
was very high in Year 5. 

However, there was a dramatic drop in this fidelity in Year 6, along with huge variation in 
pedagogy. This was, we conjecture, a result of the negative impact of the high-stakes testing in 
mathematics in England at the end of Year 6. There is massive pressure on teachers who therefore 
might feel unable to engage with a new curriculum. In addition, our data indicated that many SM Y6 
classes were taught by teachers with little or no experience of SM, either from teaching SM in Y5, or 
from engaging in the SM professional development (for more detail see Noss et al., in press).  This 
was a matter of fidelity but also of the considerable teacher churn in schools – the average for the 
staying in the profession is 4-5 years.  However, I would go so far to say that where professional 
learning was taken seriously by schools, as in the first year of the innovation, implementation tended 
to be successful. And, conversely without this it is very unlikely that an innovation like SM would 
operate in the classroom as planned. 
Celia Hoyles’ final remarks 

I end by calling for more intensive and systematic classroom research and evaluation to explore the 
classroom implementation of SM or other computing initiatives, not least as computing is now 
embedded in school practice, and learners and teachers are more confident and competent in 

                                                             
2 The evaluation report can be found at https://educationendowmentfoundation.org.uk/projects-and-
evaluation/projects/scratch-maths/  
 The student and teacher materials are freely available from the UCL website http://www.ucl.ac.uk/scratchmaths   
(creative commons license)  
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programming.  Such research would also need to reconsider methods of evaluation of research 
outcomes in terms of teacher and pupil learning.  

Digital Technologies in Canadian Mathematics Education, by Carolyn Kieran  
My contribution to the cross-cultural digital-technologies panel focuses on three aspects: i) how the 

digital-technology culture has evolved in the Canadian school system since the 1980s when the Logo 
movement began, ii) brief comments on the characteristics of computational thinking and how they 
relate to mathematical practice and mathematical thinking, and iii) Canadian research that illustrates 
the use of digital technologies for fostering mathematical thinking. 
Evolution of the digital-technology culture in Canadian schools since the 1980s 

When the Logo movement began in the 1980s, a corps of enthusiastic Canadian mathematics 
educators and teachers adopted MIT professor Seymour Papert’s vision of having children use 
computers as tools to think with. The Logo programming language was at the heart of this 
movement. The mathematical connections associated with the Logo movement spilled off the pages 
of Papert’s (1980a) book, Mindstorms: Children, computers, and powerful ideas. Mathematics 
education researchers across Canada, as well as in other countries, developed projects involving 
primary, secondary, and tertiary level students, which were aimed at exploring mathematical ideas in 
turtle geometry by programming with Logo.  

However, the Logo movement in the public schools was hampered by a lack of funds – in other 
words, the absence of political will on the part of government to invest massively in any such 
endeavours – that would have allowed for obtaining the appropriate hardware and software. The 
promising results that were being highlighted in research reports and in presentations at various Logo 
conferences throughout the 1980s and early 1990s would unfortunately not lead to more widespread 
implementation in Canadian schools. By the end of the 1990s, many had let go of their interest in 
Logo. Handheld calculators with graphing capability, as well as Computer Algebra System (CAS) 
calculators, proved to be easier (and more economically feasible) to integrate into mathematics 
classes than the more expensive computers necessary for Logo.  

Some time passed. Then by the end of the first decade of the new millennium, the situation with 
respect to digital technologies had begun to change in many ways. In 2006, Jeannette Wing, herself a 
computer scientist, wrote a brief paper titled Computational thinking where she argued that computer 
science was more than just programming; it also involved ways of thinking (Wing, 2006). The effect 
of this paper was probably more influential than Wing had expected or even dreamed. In contrast to 
what had not happened during the Logo movement, the idea of computational thinking began to have 
an effect on K-12 education. As in other countries, Canadian policy makers and curriculum leaders 
decided that our students needed to develop their technology skills within the school system.  

Education in Canada is not a federal matter; there is no national curriculum. Every province is 
responsible for setting its own school programs. So far, five provinces have begun to develop new 
technology programs. The pioneers in this movement have been British Columbia, New Brunswick, 
Nova Scotia, Quebec, and most recently (in 2020) Ontario. But, in the main, these new programs are 
stand-alone technology programs – primarily for grades 6-8, with an emphasis on a range of 
technological tools, processes, and applications, especially coding. In contrast, Ontario opted to 
integrate coding within its Grades 1-8 mathematics curriculum.  

With the exception of Ontario, one wonders if this new interest in computational activity will make 
its way into mathematics classes? Any optimism one could have might be tempered by the results of 
a recent survey of teachers of 5- to 14-year-olds in 23 countries around the world, carried out by Rich 
and colleagues (2019): While the teachers noted that their students loved the new coding activities, 
they also stated that they were more confident in their ability to teach students coding/computing as a 
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stand-alone subject than they were with integrating it into other subjects. This finding suggests that, 
along with current curricular changes, an equally important component that cannot be neglected is 
the need for an ongoing form of professional development to allow teachers of mathematics to keep 
up with constant changes in digital technologies and to feel confident in their ability to integrate 
these technologies into the exploration and development of students’ mathematical thinking. 
Computational thinking, mathematical practice, and mathematical thinking 

Papert (1980a) emphasized that when children use computers as tools to think with, they are also 
“talking mathematics” (p. 6) to these computers. It is upon his shoulders that the present 
computational thinking movement stands. So it seems appropriate to ask at this point how 
computational thinking has been characterized in this recent movement. Wing (2006), for example, 
states that she has drawn on ideas fundamental to computer science and asserts that “computational 
thinking is using heuristic reasoning to discover a solution” (pp. 33-34). And in a later paper, Wing 
(2014) writes: “The most important and high-level thought process in computational thinking is the 
abstraction process” (p. 1). Relevant to the questions addressed to this panel, she adds that 
computational thinking can be defined as “the thought processes involved in formulating a problem 
and expressing (with a linguistic representation) its solution in such a way that a computer – human 
or machine – can effectively carry it out” (p. 1). Interestingly, Andy diSessa (2018) – one of the two 
authors of Turtle Geometry back in 1981 – has taken issue with this point and has argued that non-
computer scientists rarely map out exactly how a problem can be solved before actually doing the 
solving. But is he right? 

In opposition to diSessa, and more in line with Wing, Al Cuoco (2018) in a paper on mathematical 
practice offers three examples. The first of these (see Fig. 1) relates to Wing’s emphasis on the 
process of abstraction and her point about formulating a problem and expressing its solution in a way 
that a computing being or machine can carry it out.  

 

This example involves what Cuoco refers to 
as “the dreaded algebra word problem,” 
where he insists that we think of the answer 
to the algebra problem as an equation rather 
than a number – in a method that involves 
abstracting from numerals. The problem is as 
follows: “Mary drives from Boston to 
Chicago, travels at an average rate of 60 
MPH on the way down and 50 MPH on the 
way back. The total driving time takes 36 
hours, how far is Boston from Chicago?” 

Figure 1. Arriving at an equation from abstracting 
the regularity in numerical guesses  

(Cuoco, 2018, p. 3) 

 

The method that Cuoco suggests builds upon students’ ability to solve similar problems in middle 
school (note: they have already learned the relationship between speed, time, and distance) and is as 
follows: Take a guess – but the aim is not intended to get closer to the answer with each succeeding 
guess; rather it is to arrive at an equation, not a number. The idea is to carry out enough guesses so as 
to see the regularity of the calculations that allow for checking the guesses – in Cuoco’s words: 
Develop “a generic ‘guess checker’ that is the desired equation”. The processes of mathematical 
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practice that are employed here, and which are ones that Cuoco declares he uses all the time in his 
own mathematical work, are: 

1. Abstract regularity from repeated calculations, and 
2. Use precise language (and algebraic symbolism) to give a generic and general 

description  – the equation – for how you check your guesses. (Cuoco, 2018, p. 4) 
The conclusion to be drawn from this example is that these two processes of mathematical practice 

fit well with the programming and thinking-like-a-programmer characteristics of computational 
thinking (Wing, 2006, 2014), and that students who are currently engaged in using digital 
technologies (e.g., laptops, robots) to code with visual (e.g., Scratch) or text-based languages are 
participating in mathematical practices. Nevertheless, other research (e.g., Bråting & Kilhamn, 2020) 
suggests that, while the representations used in programming languages may be similar to 
mathematical notations, the meanings of several concepts in the two domains differ. But that is a 
whole other story! In any case, digital technologies afford multiple varieties of mathematical activity 
that can offer experiences that involve coding but also those that do not. 
Some Canadian research on the use of digital technologies to foster mathematical thinking  

I take mathematical thinking to include the various processes that have been drawn upon by Wing 
and others to characterize aspects of computational thinking – but also more than this, for example, 
its conceptual aspects. While computational thinking is focused toward coding, mathematical 
thinking occurs within a host of activities that are not coding oriented, but which can clearly be 
engaged in within specifically-designed digital environments. However, the tricky thing about terms 
such as computational thinking and mathematical thinking is their overlap when referring to anything 
mathematical. Moreover, as Cuoco (2018, p. 2) has pointed out: “In real mathematical practice, it is 
rare that a piece of work employs only one aspect of mathematical thinking” – and, similarly, only 
one aspect of computational thinking. Despite the obvious intersection between the two terms, I find 
it helpful when discussing the use of digital technologies in mathematical activity to distinguish 
between coding-related activity and non-coding-related activity. In line with this distinction, I offer 
some examples that give a flavour of Canadian research that has focused on these two types of 
activity, both of which have successfully combined selected aspects of computational thinking and of 
mathematical thinking.  
Digital Technologies in Coding-Related Mathematical Activity 

Scratch coding on laptops. My first example is drawn from the funded, multi-study research 
project of George Gadanidis and colleagues from across Canada, titled Computational Thinking in 
Mathematics Education – a project aimed at researching the use of computational thinking (via, e.g., 
digital tangibles such as circuits, programmable robots, and coding with Scratch on laptops) in 
mathematics education, from pre-school to undergraduate mathematics, and in mathematics teacher 
education (see ctmath.ca/about). In one of the publications from this project (Gadanidis et al., 2017), 
the initial activity engaged in by the Grade 1 students of a school in Ontario was the use of the block-
based, visual programming language, Scratch (available at http://scratch.mit.edu), for exploring 
squares by drawing a set of squares rotated around a point (see Fig. 2; see also Gadanidis, 2015). One 
of the fundamental principles underpinning these study projects is connecting the digital technology 
work in classrooms to the math curriculum that teachers need to teach.  
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Figure 2: Scratch coding in Grade 1 (from 

Gadanidis et al., 2017, p. 81) 
Figure 3. Programming a robot using loops 

(from Francis & Davis, 2018, p. 82) 

Coding robots. Francis and Davis (2018) studied 9- and 10-year-olds’ understanding of number, 
and the transition from additive to multiplicative thinking, in the context of learning to build and 
program Lego Mindstorms EV3 robots. The sequence of tasks focused on students’ becoming aware 
of the architecture of robots, programming the robots to trace a triangle, square, pentagon, or 
hexagon; and building a robot that could find and douse a ‘fire’ in any of four rooms of a miniature 
model building. In one of the scenarios that Francis and Davis report on, a student learns how the 
number of sides and angles of a polygon connects to the number of repeats in a loop, which 
illustrates a developing shift from thinking additively in terms of a sequence of like actions to 
thinking multiplicatively in terms of a repetition of a single action (see Fig. 3). The authors argue that 
coding-related activity with digital technologies can co-amplify mathematics learning, as long as 
computer programming is seen as “something for” and is integrated into the existing curriculum with 
well-designed tasks, not as “something more” in a separate curriculum. 
Digital Technologies in Non-Coding-Related Mathematical Activity 

 

 

 
 

Figure 4. TouchCounts App: upper -- 10th 
tap; lower -- result of 10 single taps (Rodney, 

2019, p. 169) 

Figure 5. “Five Steps to Zero,” with a starting 
number of 151 (adapted from Williams & 

Stephens, 1992) 

TouchCounts – an iPad touchscreen App. The TouchCounts application software, developed by 
Sinclair and Jackiw (2014), served as a window for the researcher Rodney (2019) to study how a 5-
and-a-half-year-old, Auden, thought about number. Although Auden was able to say the number 
names initially, he seemed unaware that the written numeral ‘10’ would appear right after ‘9’ and 
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that ‘10’ also represented the number of taps made on the iPad screen (see Fig. 4). Auden’s 
unsuccessful initial activity with the App revealed that his memorized number chanting needed the 
further support that TouchCounts could afford in order to reach a fuller understanding of counting 
and to begin to identify the relational aspect of numbers.  

Calculators with multi-line screens. Calculators remain a staple in many mathematics classes. 
This resource, one with a multi-line screen, served as the digital tool underpinning a study that 
focused on the mathematical practice of seeking, using, and expressing structure in numbers and 
numerical operations (Kieran, 2018). The study (co-conducted with José Guzman†) involved classes 
of 12-year-old Mexican students on tasks adapted from the “Five Steps to Zero” problem (Williams 
& Stephens, 1992; see Fig. 5). Successfully tackling the designed tasks, and subject to the rules of the 
game, involved developing techniques for reformulating numbers (prime or composite) into other 
numbers in the same neighbourhood (not more than 9 away from the given number) that have 
divisors not larger than 9 so as to reach zero in five or fewer steps. Some of the most powerful 
structural explorations that occurred during the week of activity on the tasks involved the search for 
multiples of 9. For example, students became aware that “738 and 729 are two adjacent multiples of 
9 and, when they are both divided by 9, the quotients are consecutive,” and “in the 9-number interval 
from 735 to 743 inclusive, there is exactly one number divisible by 9.” In trying to explain the often-
surprising results produced by their digital tools, the students developed several mathematical 
insights that were new to them.  
Carolyn Kieran’s concluding remarks 

My concluding remarks pick up on the interest shown by students in the use of digital technologies 
– be they coding-related or not. For example, Gadanidis et al. (2017) emphasize “learning 
experiences that offer the pleasure of mathematical surprise and insight” (p. 80). Similarly, Sinclair, 
Healy, and Noss (2015) speak of the “sense of delight” offered by digital technologies, but also of the 
need for a certain degree of “intellectual travel” (p. 2). In this latter regard, an early Logo study by 
Idit Harel (1990) is exemplary. Her 4th graders took up the challenge of designing and programming 
fractional representations that they thought would be helpful for younger children. This project led to 
significant gains in their understanding of both fractions and programming. As Harel points out: “the 
children’s involvement in a rich, meaningful, and complex task, designing and programming a ‘real’ 
product for ‘real’ people, enhanced their understanding of Logo and their knowledge of how to use 
it” (p. 30). Clearly, embedding computational thinking into disciplinary contexts can be most 
productive and yields a strong lesson for policy-makers who advocate for stand-alone, coding 
programs in school.  

The Use of DT in Mathematics Education: Experiences from Anglo-Mexican Collaborative 
Research And Implementation Programs in Mexico, by Teresa Rojano 

Potential of the use of DT in the teaching and learning of algebra  
There is abundant literature on research pertaining to the use of digital technologies for teaching and 

learning algebra, in which it can be observed a distinction between two types of tools, those 
developed expressly for this mathematical domain, such as Computer Intensive Algebra, Cabri-
Géomètre, Geometer Sketchpad, SimCalc, and those that have been adapted for educational use, such 
as Computer Algebra Systems (CAS) and Spreadsheets (Sutherland & Rojano, 2014). Studies carried 
out with both types of programs have shown their strengths and limitations (Olive et al., 2010), and 
have highlighted the relevance of task or activity design in order to use them to create significant 
teaching environments (Donevska-Todorova et al, in press). A common denominator among many of 
these digital technologies, which is also one of its main potential strengths, is the connection between 
different representations, which allows for avenues to be created, where students can approach 
notions and learn novel and powerful algebraic methods, in an intuitive way (Zbeik & Heid, 2011). 
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Spreadsheets fall under the latter case, as the interconnection between the representation of numerical 
tables, the graphic representation and the use of algebra-like formulas, allows for the possibility of 
shifting between numerical and quasi-algebraic treatments, both for concepts like variable, unknown 
and function, and for word problem solving methods. Here I will specifically refer to my direct 
experience recreating intrinsic concepts and processes of algebraic thought, in this environment.  

Spreadsheets and algebraic thinking. Outcomes from the Anglo-Mexican Spreadsheets Algebra 
Project (Sutherland & Rojano, 1993) carried out during the 90s, showed that students of different 
ages and school levels can work with algebraic ideas, taking a numerical approach, and using 
formulas whose syntax is similar to that of algebra. One of the studies was undertaken with two 
groups of students 10 to 11 years of age, one group in Mexico and the other in the UK, who worked 
with spreadsheet activities focused on the notions of function and inverse function, as well as on 
equivalent algebraic expressions and the solution of algebra word problems (Rojano & Sutherland, 
1994). Figures 6 and 7 show examples of the type of worksheets used in the study. 

The results of the pre-questionnaire applied to the students from both groups, before the 
experimental work, showed that the majority of the pupils did not think spontaneously in terms of a 
general object. Initially their mode of thought was on specific cases (for instance, on a particular line 
of a variation table) and the activities with spreadsheets helped them to move from focusing on 
particular cases to considering a general relation (see the worksheet in Figure 6). What is more, the 
sequence of activities on functional relations, the sequence on solving word problems helped the 
students to accept the idea of working with unknowns, to represent relations among data and the 
unknown of a problem, and to vary the numerical value of the unknown until they found the solution 
to the problem (see the worksheet in Figure 7). The experience with such activities enabled them to 
go from intuitive strategies for solving problems (such as trial and error, for example) to strategies in 
which they systematized their trials (trial and refinement) to finally encapsulate the relations between 
unknown and data in spreadsheet general formulas (Rojano & Sutherland, 1994; Sutherland & 
Rojano, 1993). 
Function and Inverse Function 

 
Figure 6. Example of one of the worksheets provided for the teaching of function and inverse 

function.  
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Figure 7. Rectangular field problem (Rojano & Sutherland, 1993).  

In general, it is worth noting that despite the different experience in school mathematics that British 
and Mexican students could have had, given the differences in the mathematics teaching approaches 
in Mexico and the UK, there were no significant differences in the performance of the Mexican and 
British students, neither in the results of the pre-questionnaire nor during the work with the 
spreadsheets. The latter may be attributed to the connection that the students could have made 
between their own notions and intuitive strategies and the algebraic notions of function and 
unknowns, thanks to the combination of a numerical approach and the use of spreadsheet formulas, 
characteristic of the didactic design of the activities. In a second phase, the Anglo-Mexican project 
focused on working with 14 to 15 year-old students from both countries, students with a history of 
school failure in mathematics and who had already been introduced to the study of symbolic algebra. 
The results of the pre-questionnaire revealed that participating students were able to solve the 
problems using intuitive strategies and in some cases those strategies led them to the right solution. 
During the experimental work of this phase, activities with spreadsheets were used that were very 
similar to those of the study involving 10-11 year olds, in the end achieving the same effect –a 
connection between intuitive and non-formal approaches of the students, and notions and methods on 
the path toward algebraic thinking (Rojano & Sutherland, 1994). 

Although spreadsheets were not developed for educational purposes, both the study undertaken with 
pre-algebraic students (10 -11 year-olds) and the study involving algebra resistant secondary school 
pupils show that use of that program accompanied by worksheets with an appropriate didactic design 
has great potential as a digital learning environment for exploring algebraic ideas and concepts. 

The surprising work that participating students carried out in those studies did not prevent us from 
identifying the limitations of the environment that we used, which relate to what Zbiek et al. (2007) 
call 'mathematical fidelity'. In my interpretation, the distance between the syntax of Spreadsheet 
formulas and algebraic syntax may be a hallmark of weak mathematical fidelity; in the former case, 
formulas allow for representation and manipulation of generalizations, but they cannot be 
transformed with internal rules from that system of signs; while in the latter case, on the one hand, 
the analytical expressions of functions can be analyzed and transformed, under the rules of algebraic 
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syntax so as to delve into the variation phenomena that they represent and, on the other, in advanced 
mathematics courses, those analytical representations can be treated as entities of more abstract 
mathematical structures. This continuity through the different educational levels is absent in the 
Spreadsheet environment. For its part, the spreadsheet method for solving word problems is 
mathematically and didactically pertinent to some families of problems, but it is far from the 
Cartesian method of solving problems, which is a general method and consists of getting the situation 
described in the text of the problem ‘put into an equation’. In summary, finding the didactic 
connection between the versions of notions and methods used in the digital technologies and the 
'paper and pencil' versions used in school mathematics is still a significant challenge for teachers, 
trainers and curriculum designers. 

In addition to understanding its potential and limitations, one should recognized that, together with 
the first dynamic geometry programs, the adaptation of Spreadsheets in mathematics education can 
be considered as part of the background to open source software Geogebra, which indisputable 
widespread use has more recently led to a large number of reports of practical experiences and 
research that use this package and that, among many other things, highlight the didactic feature of 
being able to create connections between algebra and Euclidean, Cartesian and Analytical 
geometries. 
Research experiences: Windows of mathematics school culture  

From our first forays into collaborative research on technology and algebraic thinking in the late 
1980s, Rosamund Sutherland and I found differences between the educational systems of Mexico 
and the United Kingdom, some of which appeared specifically in the presentation of the topics of 
algebra in the curriculum, as well as in the diverse various educational material to be used in class. 
Both the differences and the commonalities permeated the design of the tasks used in the studies we 
undertook. However, observation and analysis of the ways in which each of the two groups solved 
the same task served as a window that allowed us to glimpse the distinctive features of the students' 
mathematical practices, where multiple representations of the same situation or phenomenon play a 
central role. 

Spreadsheets as a mathematical modeling tool. More recent versions of spreadsheets offer a 
suitable environment for mathematical modeling tasks using (hot-linked) graphical, symbolic and 
numeric representations of phenomena of the physical world. The activities in this environment 
correspond to a parameterized version of the behavior of the modeled phenomena, and knowledge of 
advanced mathematics is not necessary in order to explore and build the models. In the Mexican-
British project, The role of spreadsheets within the school-based mathematical practices3, research 
was carried out with two groups (one in Mexico and another in the UK) of pupils of 16-18 years of 
age, in which it was observed how the differences of school culture experienced by each of the 
groups influences both their mathematics practices and their mathematics modeling activities using 
spreadsheets (Molyneux, Rojano, et al., 1999).  

In the pilot phase, important differences were observed in the preferences of students for certain 
external representations of situations and phenomena. For example, when answering questions about 
the long-term behavior of the phenomenon, UK students showed a clear preference for graphic 
representation, while students in Mexico were inclined to use algebraic representation. However, 
even though work with Spreadsheets, in the experimental phase, did not significantly change those 
preferences, in the end the students recognized the value of having a varied repertoire of 
representations. In fact, one of the relevant results of this research was that participants developed the 

                                                             
3 The Anglo-Mexican Project was developed as a collaboration between the Institute of Education of the University 
of London and the Department of Mathematics Education of the Centre for Research and Advanced Studies 
(Cinvestav) in Mexico, funded by the Spencer Foundation of Chicago, Ill, Grant No. B-1493. 
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ability to move smoothly from one representation to another and to realize the advantages afforded 
by some of them in answering certain types of questions posed about the behavior of the modeled 
phenomena (Rojano & García Campos, 2017). 

Notwithstanding the fact that the main purpose of our research was not to study or compare school 
culture contexts, when analyzing the data collected in the two countries differences emerged that 
could not be explained, other than on account of what was emphasized or valued in the mathematics 
classroom, that is, it could be said that the differences originated in the school mathematics culture. 
Research and Practice. The use of DT in the Mexican Educational System 

In Mexico, as in many other countries, it has not been easy to bridge the results of research on the 
role of DT in the teaching of mathematics and incorporating their use in the educational system. We 
have gone through government programs ranging from the use of TV (in the 1960s) to broadcast live 
or pre-recorded classes, to the Teaching Mathematics with Technology (EMAT), Enciclomedia and 
the New Model for the Telesecondary System. The EMAT project was conceived specifically for the 
subject of mathematics in middle school, based on results from research in mathematics education. 
An international team of researchers designed a constructivist pedagogical model and student-
centered activities, with an exploratory approach that encourages bottom-up practices, rather than 
traditional top-down practices. The tools used were Spreadsheets, Cabri-Géomètre, the TI-92 
Algebraic Calculator and Logo, and a gradual implementation was planned starting in 1997, that 
would expand the use of different tools in different states of the country. Despite the fact that said 
implementation was not carried out as planned, some teachers who participated in the initial stages 
have continued to work for several years with EMAT activities, managing to integrate use of the tool 
repertoire into their own long projects (Trouche et al., 2013). 

The experience from the EMAT project was used in the design and implementation of the New 
Model for Telesecundaria (Lower secondary system of rural areas without access to regular schools), 
which main feature is the articulation of printed, video and digital interactive resources, which are 
still in use. It is worth mentioning that the results of a study carried out by the Ministry of Education 
revealed that since the New Telesecundaria Model was launched, this system, compared to that of 
regular secondary schools, showed more sustained progress in terms of improved student scores on 
the yearly national mathematics and language exams (SEP, 2016). 

Other national programs were suspended shortly after they were started, however, together with 
EMAT, Enciclomedia and the New Model for the Telesecundaria, the infrastructure and diverse 
experiences left by the programs throughout the country have been used by some teachers who have 
adapted the activities and the use of different tools to the curricular changes derived from the 
educational reforms. Whereas other teachers have limited the use of technology to displaying 
Powerpoint material, video material and YouTube, as it has been recently documented by Salinas, 
Sacristán and Trouche (2018). Thus, the use of DT to fundamentally transform mathematical 
practices at school and outside of school continues to be a great challenge in this country.  

Reflections on the integration of digital technologies for mathematics education,  
by Ana Isabel Sacristán and María Trigueros 

Taking into account the previous authors’ reflections on the way digital technology culture has 
evolved in different countries' curricular approaches, teachers’ professional development and 
students' participation and learning, we present some additional thoughts and discuss also observed 
contrasts and what happens in societies with different socioeconomic and cultural backgrounds. We 
also consider to what extent the potentialities of digital technologies have been harnessed to enhance 
mathematics learning and to engage students.  
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The previous authors have given us a panorama of the digital technologies that have been used in 
mathematics education. To summarize these, we refer to the USA’s NCTM Position Statement which 
states that, in addition to content-neutral technologies such as tools for communication and 
collaboration and Web-based digital media, mathematics’ content-specific technologies that can 
support students in exploring and identifying mathematical concepts and relationships, “include 
computer algebra systems; dynamic geometry environments; interactive applets; handheld 
computation, data collection, and analysis devices; and computer-based applications” (NCTM, 
2015). To that we can add other expressive technologies such as computer programming 
environments, as well as eBooks. 
On the potentials and historical evolution of digital technologies for mathematical learning  

As Hoyles discussed above, it is clear that today’s technology-based society needs to develop 
students’ abilities not only in the use of technology, but as reasoners to exploit their use. The 
question is how digital technologies can be integrated and exploited in schools for achieving that and 
enhancing mathematical learning. 

As many researchers in mathematics education, the panellists and ourselves believe (and a wide 
corpus of research has demonstrated) that digital technologies have the potential to change education, 
the teaching and learning of mathematics (e.g., by opening windows to mathematical knowledge, as 
Hoyles suggested), the curriculum, and also rethink mathematics as a field. Also, as Hoyles also 
mentions, using digital technologies in innovative ways could potentially widen access to learning.   

Both Hoyles and Kieran cite Seymour Papert’s vision of having students use computers as tools to 
think with and of  how mathematical understandings can be changed by the use of digital 
technologies. Papert’s (1980a, 1971/1980b) vision was for students using and programming 
computers for doing mathematics, rather than learning about mathematics; it is interesting that more 
recently, Chevallard (2015) also called for students to do mathematics, rather than visit them as if 
looking at a monument.   

As explained by Hoyles above, programming allows users to interact with and visualize 
mathematics in new ways; it also can be used together with other technological tools so that it is 
possible to construct relations among concepts that so far have been considered as different, avoiding 
compartmentalization of knowledge.  

In any case, an important potential of technology is for empowering students, be it through 
computer programming or through providing mediums for them to express themselves as well as 
mathematical ideas, and to build their own products (which is why Papert, 1991, called this 
constructionism) – in Hoyles’ words, where students are producers, rather than consumers, of 
technology.  And as Hoyles also emphasizes, Papert’s vision had two central ideas: epistemological 
pluralism and microworlds.  Hoyles discusses epistemological pluralism above, but we could add that 
when one has multiple means and representations to engage, interact with, and express mathematical 
ideas, those ideas become less abstract (Wilensky, 1991) and can more easily be appropriated. As 
discussed by Hoyles, computer programming, in particular, helps students to interact with 
mathematical objects in different ways, enabling students to visualize and reflect on the factors 
involved in different types of interactions.  

The other important idea is that of microworlds, which Hoyles above described as a place where 
powerful mathematical ideas can be explored ‘in safety’.  

In the advent of the digital age, the Logo programming environment provided an ideal medium and 
microworld for students to engage in this epistemological pluralism and develop mathematical 
thinking,  through computer programming and computational thinking. As touched upon by Hoyles 
and Kieran, following the publication of Papert’s 1980’s book Mindstorms, Logo had a widespread 
influence on the use of digital technologies in (mathematics) education. It was thus that Logo was 
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implemented in countries around the world during the 1980s (including Mexico); and it was a crucial 
turning point in countries such as the UK and Canada, as well as the USA.  

And yet, for a couple of decades starting in the 1990s, there was a generalized abandonment of 
Logo and Papert’s vision, which happened in most countries. Kieran mentions a lack of funds for 
Logo projects losing ground in Canada, but the general reasons for that abandonment around the 
world are much more complex, and involve a confrontation with what Sacristán (2017) calls the 
‘inertia of school cultures’.  Agalianos, Noss & Whitty (2001; see also Agalianos, Whitty & Noss, 
2006) explain this complexity by pointing to how technologies and their use in the classroom are 
socially contextualized and often appropriated in ways unanticipated by their developers – something 
that is still true today:  

To work with Logo in the way its developers had envisaged meant that teachers should make 
a fundamental shift in their relationship with pupils….This, however, was a lesson not learnt 
for many teachers who felt uncomfortable […] Logo (...) automatically constituted a 
disruption of the classroom’s traditional social organisation. [...] 
Logo’s introduction into mainstream US and UK schools in 1980 marked the beginning of a 
struggle to integrate new forms of teaching and learning into old educational 
structures. (p. 486-487, our emphasis). 

On his part, Ruthven (2008; see also Ruthven, 2014) points to the conjunction of several influential 
factors that are needed for successfully uptaking an innovation in school mathematics, and discusses 
how difficulties related to each of those factors acted against the continuation of the use of Logo in 
schools (and, we argue, in general, of more innovative visions, including Papert’s). Those factors are: 

• Disciplinary congruence with an influential contemporary trend in scholarly mathematics. 
• External currency in wider mathematical practice beyond the school. 
• Adoptive facility in terms of ease of incorporation into existing classroom practice. 
• Educational advantage through perceived benefits of use considerably outweighing costs and 

concerns.   (Ruthven, 2008) 
In terms of adoptive facility, in the 1990s other developments, such as graphing calculators, CAS, 

Excel, dynamic geometry, etc. became popular and, as Kieran points out, seemed to offer teachers a 
more direct, less costly and perhaps easier to adopt, use of technology for mathematics teaching (and 
learning?). Many producers of such technologies also pushed newer software and hardware as 
solutions for the introduction of digital technologies in classrooms, but there is a difference between 
having a technology and using it for meaningful learning: we argue that, very often, schools became 
consumers of commercial developments, due to political and administrative decisions, failing to 
integrate those technologies in ways that would improve learning.  

In any case, due to those complex reasons, in the 1990s and early 21st century the use of 
programming, and its relation to the development of mathematical thinking, was abandoned. During 
that period, in some countries, such as Mexico, there were efforts to return to something closer to 
Papert’s vision through the development of the EMAT national project presented by Rojano, above. 
That project highlighted the importance of design and showed a way to use popular software, such as 
Excel, as in the example given by Rojano, in a way that could help in making the transition from 
arithmetic to algebra smoother for students. However, the EMAT project, though successfully tested, 
succumbed to political changes (Trouche et al., 2013), as we discuss further below; although, as 
Rojano points out, some teachers have continued using the EMAT technologies and materials in their 
classrooms until today, to promote their students' learning.  

It is only in the last decade that interest and the recognition of the importance of computer 
programming, and computational thinking, has resurfaced in developed countries (but, as discussed 
below, not so much in other countries). Computational thinking, popularized by Wing (2006), and 
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‘coding’ have now become educational trends. How programming and computational thinking relate 
to mathematical thinking had already been discussed by Papert (1980a) and others in the 1980s and 
90s. But Kieran above gives a profound discussion of their relationship. She agrees that 
computational thinking and mathematical thinking overlap, and engaging in programming and 
computational thinking implies participating in some mathematical practices. She argues, however, 
that mathematical thinking is more than what is achieved through coding and computational thinking 
but that other specifically-designed digital environments can also be helpful in promoting it.  
Digital technologies in mathematics curricula across cultures   

In any case, because of the attention that coding and programming have received in the past decade, 
many developed countries around the world have integrated these into school curricula.  

In the UK, Hoyles mentions above how programming has come to the forefront since 2014; and 
Kieran describes experiences in Canada where programming has also been included in the 
curriculum. The question is how this integration affects the mathematics curriculum. Hoyles 
describes how she and her colleagues in the UK developed ScratchMaths in a research attempt to 
integrate the computer science curriculum with mathematics. It is interesting that ScratchMaths has 
been adopted in other countries outside the UK, such as Australia (Holmes et al, 2018), to use coding 
to teach mathematics.  

In Canada, Kieran describes how programming activities have been introduced early in school but 
are used together with other technological tools to foster opportunities to construct relations among 
mathematical concepts.  

However, in other countries, programming and computational thinking have not been included in 
the curriculum, nor sometimes even considered. In fact, there is thus a huge gap in the recognition of 
the possibilities that the use of digital tools offer to mathematics students and teachers and how the 
use of technology has evolved in countries and cultures around the world. The political strategies 
vary in different parts of the world to foster the inclusion of technologies in the mathematics 
classroom and rethink the curriculum.  

In the USA, according to the NCTM: “All schools and mathematics programs should provide 
students and teachers with access to instructional technology—including classroom hardware, 
handheld and lab-based devices with mathematical software and applications, and Web-based 
resources—together with adequate training to ensure its effective use” (NCTM, 2015). This 
statement indicates a public recognition of the necessity of integrating a wide range of digital tools 
for teaching mathematics at schools, as well as the importance of teacher training for an effective and 
strategic use of those resources in the classroom. However, it is striking that in that statement, there 
is no mention of programming and computational thinking, which, in other countries have been 
considered more prominently as central for the development of mathematical thinking. 

In Mexico, as discussed by Rojano, although at the turn of the century the potential of digital 
technologies in the teaching of mathematics was recognized when different public administrations, 
between 1998 to 2006, launched national projects directed at middle and elementary school children 
– EMAT, the New Telesecundaria Model, and Enciclomedia (Trigueros et al., 2006) –, this is no 
longer the case. Unfortunately, when the government changed, those projects disappeared. Since 
then, only the use of calculators and office applications have been recommended, but not included, in 
the following curricular changes. (Only some teachers, who found them useful to promote students’ 
mathematical learning continue to use the EMAT or Enciclomedia tools in their teaching). 

Thus, in many countries, and perhaps for different reasons, schools and curricula have remained 
attached to the use of software and/or calculators that are aids to the set curriculum and are 
considered useful in mathematical problem solving and in helping students understand specific 
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concepts. In other words, they are added on to existing curricula and used to do the same as before 
but with the technology add-on, instead of for innovative ways of interacting with mathematics.   

How the learning potential of digital technologies is considered varies from country to country, but 
also in different regions inside countries (as in the case of Canada, discussed by Kieran). In some 
places, digital technologies are embedded in school culture and specifically in mathematics 
classrooms, while in others, this is not the case. Julie et al. (2010) had already presented perspectives 
from different parts of the world illustrating the diversity of access and implementation of digital 
technologies. Some of these differences persist, perhaps due to diverse policies but also because of 
socioeconomic differences and factors (also, in terms of how technology is used and perceived in 
schools, gender may also be an issue). More problematic is the fact that many parts of the developing 
world still have issues of lack of access to technologies, rely on very old hardware, if any is available 
at all (see, for example, Sacristán et al., in press), and teachers have insufficient or no training in their 
use and pedagogical integration.  

Thus, economic and social problems result in a widening gap, not only between different countries, 
but also inside these countries since development, technological opportunities and even the 
possibility to have access to technology are not the same. As technology continues to quickly 
develop, the gap between students who have opportunities to use technologies for mathematical 
thinking and learning, and those who don’t, widens, and inequalities among different populations 
increase.  

This gap in opportunities along the whole schooling process, has an important impact in terms of 
equity and on students’ future. Jobs will need more and more mathematical and computing abilities 
so students who have not had the opportunity to develop them in depth will find it difficult to find 
jobs, thus the social context in different countries is increasingly divided.  
On integrating new technologies and adapting to their changes 

When integrating digital technologies for learning in schools, there is a recognition of the 
importance to provide, in Hoyles’ words above, “a framework for the design and implementation of 
computational tools for learning mathematics.” The issue of design is paramount. In summarizing 
Papert’s constructionism, Hoyles mentioned the two central ideas of epistemological pluralism and 
microworlds. The design of the learning and exploratory universes that microworlds are, need 
include epistemological pluralism and take into account different components, as described by 
Hoyles and Noss (1987): the student component, the pedagogical component, the contextual 
component and the technical component. EMAT was a project that designed a model that took into 
account all of those aspects (Sacristán and Rojano, 2009). But careful design is only as good as what 
can be taken up by the educational system. As in the case of why Logo and Papert’s vision declined 
in the 1990s, there is also the issue of the difference between an intended design and how it is 
implemented. In projects like EMAT or ScratchMaths, a very careful research-based design 
involving many researchers in mathematics education, as well as some teachers, was carried out 
aiming at maximizing the (mathematical) learning possibilities. These designs included, not only 
mathematical tasks, but also pedagogical models, associated teacher training models and possibilities 
for scaling up in order to expand to cover all, or a majority of, schools at a national level. However, 
when implemented, many of the initial intentions are lost. In the EMAT project, teacher training was 
never achieved as designed, and the scaling up was suspended due to government changes. In 
ScratchMaths there was also the problem of fidelity that Hoyles referred to above (see also Hoyles 
and Noss, 2019): how faithfully teachers (and schools) adopt, or are able to do so, the intended 
design. This necessarily leads to results that are generally less than expected. 

Also, technology designers look for ways to offer educational systems, software with more 
capability in terms of interactivity and in terms of what they believe is needed in schools. Research 
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on the use of technologies is constantly adapting to better understand how teachers and students use 
new resources in order to incorporate change in teachers’ training programs and to look at how and if 
implementation in the classroom works in terms of students’ mathematical learning.   

Results often do not meet designers' expectations and real use of technology at school do not match 
with them either. On the one hand teacher adaptation to new technologies takes time and on the other 
hand when teachers find out that some tools work well in terms of their student’ learning they are 
unwilling to try something new which may or may not work. These problems, together with the lack 
of access to tools and the fact that teacher training programs do not reach all teachers and the need to 
convince many teachers who don’t want to take risks of finishing curriculum on time or don’t see 
how technology matches with official curricula, need to be taken into account if the use of digital 
technology is considered important for the learning of mathematics. 

When analyzing the efforts in the past couple of decades of educational systems around the world to 
integrate digital technologies in schools (not necessarily for mathematics), the words of Healy 
(2006), although she was referring to the case of Brazil, are valid in the cases of many countries: the 
attempts may tend to emphasize the computer as a catalyst for pedagogical change, but “they fail to 
acknowledge the epistemological and cognitive dimensions associated with such change or the 
complexity associated with the appropriation of tools into mathematical and teaching practices” 
(Healy, 2006, p. 213).    

Moreover, technologies change fast. Keeping up with those changes is difficult for teachers, 
particularly if they have to catch up by themselves and only highly motivated teachers who have had 
good opportunities to evidence positive changes in their students are willing to do the needed efforts 
to develop teaching plans for their students to work with technology. There are also institutional 
constraints that limit teachers’ possibilities to fully use the potential of digital technologies. Sacristán 
(2017) discussed in depth some of the challenges for teachers (and schools) to meaningfully integrate 
digital technologies into teaching practices for mathematical learning. Hoyles above also mentions 
the pressure of preparing students for national examinations, but there are others, such as the time 
needed to cover specific curricular topics, or the way a topic is presented in the textbook. All these 
factors need to be taken into account when designing teachers training courses.  

Projects that involve collaboration between university researchers and teachers have proved to play 
an important role in the possible success of implementation in schools and in the promotion of 
students’ learning, as was the case of the example given by Hoyles as well as the EMAT project 
mentioned by Rojano. Collaboration offers teachers opportunities to discuss strategies to use 
technology to transform their practice and to develop technological skills to make decisions to guide 
students’ mathematical thinking. This type of approach, together with other teacher training 
initiatives, are indispensable for teachers to overcome their difficulties.  

Unfortunately, teacher training opportunities are unequally supported in different cultures. While in 
some places programs are offered continuously to teachers, in others teachers are left to develop their 
own strategies to introduce technology in their classrooms; thus teachers are in many occasions 
discouraged and leave technologies aside.  

Another phenomenon that has been observed is that in most places research projects to introduce 
technology to the classroom create lots of activity in terms of groups of researchers and teachers 
working together to creatively devise ways of using new technologies to teach mathematics. 
However, when those projects end, this activity stops. Regrettably, the lack of continuity and the gap 
between research and school policies, is true everywhere: Even in developed countries, as is the case 
with many European projects, when the funding finishes, interesting innovations abruptly end, and 
researchers move on to different proposals. This cycle repeats over and over, leaving aside the 
possibility to develop long term proposals which could make an imprint in the educational system.  
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Only a handful of creative and motivated teachers continue using the materials developed for 
research projects or previous government initiatives, adapting them to their teaching, and developing 
strategies to use those proposed technologies with their students. 

Teachers and school systems have difficulty adapting to the perpetual changes in projects, as well as 
in the technologies available. It is therefore important to develop long-term professional development 
strategies and programs so that teachers can develop knowledge to be able to cope with and adapt to 
the technological changes in a productive way.  
Concluding remarks 

Digital technologies have played an increasingly important role in changing the mathematics 
classroom. Research has come a long way in terms of how to harness the possibilities that 
technologies can offer in terms of developing students' mathematical learning, although schools 
today are very different than when digital technologies first became available for education. But we 
should not forget that in this information age where information and communication technologies 
dominate, there are also other content-specific digital technologies, such as expressive and computer 
programming environments, that are important to develop mathematical thinking and practices. In 
particular, the tools that are generally used (including, more recently, communication ones during the 
COVID pandemic), haven’t fully led to a meaningful integration of digital technologies in and for 
mathematics education. Thus, despite the exponential growth and influence of digital technologies in 
society, innovative visions (such as Papert’s) haven't fully come to fruition.  

Many projects, developed around the world, have shown that students enjoy using digital 
technologies in the mathematics classroom and there is evidence of the potential of these 
technologies to promote students’ learning. But, although we have clear evidence that they can be 
used to foster students’ mathematical competencies and learning, the expected results of their use in 
the classroom are still far from those desired. There are some important areas, such as evaluation and 
assessment (including self-assessment), and activities outside school, for which the potential of 
technologies has not been harnessed to support students’ learning. 

An important area that needs attention is the need to foster teacher training programs to overcome 
an existing tendency of teachers to improvise in the classroom, and for developing creative ways to 
use technology, including for assessment and self-assessment.  

Also, inequalities in different school systems around the world, as discussed above, can be bridged 
through the development of long term projects that foster equality in the access of technologies, rich 
teacher training programs and activities for students to promote their learning autonomy. As it is 
now, differences among educational systems are widening but also differences in terms of 
opportunities within specific systems are far from what would be expected in terms of mathematical 
learning for all. When social and economic conditions are considered at this particular moment in 
time when the COVID pandemia has strongly affected all countries, life has become dependent on 
the use of technology in many aspects; but the difference between children that have access to 
technology and those who don’t (or only have access to state-produced educational TV programs, as 
is the case in Mexico) is expected to increase the education gap.  

It is time to consider more thoroughly how to harness the technologies that are already widely 
available to students in most countries: in particular, mobiles and smartphones. These accessible 
technologies have spread quickly around the world and are used by many students, but their rich 
educational potential has not received enough attention from researchers and from policy makers. 
These technologies are powerful and it is shown that more people have access to these than to 
computers. These tools need to be taken into account to develop interesting ways for their users to 
develop mathematical thinking inside and outside the classroom, with diverse uses and applications. 
New developments need creative ways of thinking and of using the growing potential of digital 
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technologies in order to provide opportunities for all students to have access to computational and 
mathematical thinking, thus providing them with a potentially better future in the technology-based 
society. But this also implies transforming school cultures – not an easy task, as the story of Logo 
and other innovations shows.  

Nevertheless, it is necessary to focus on how to use the technology potential to help reduce access 
inequalities, by looking for creative ways to help children around the world develop their 
mathematical thinking potential, and contributing to the creation of a better world for all. At the same 
time, we should also continue to devote time and effort to consider what has been dubbed “Papert’s 
10%” (from his call in his keynote speech at the ICMI 17 Study in Vietnam 2006): how mathematics 
and mathematical practices can change due to the availability and access to digital technologies. 
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