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Covariation and covariational reasoning are key themes in mathematics education research. 
Recently, these ideas have been expanded to include cases where more than two variables relate to 
each other, in what is termed multivariation. Building on the theoretical work that has identified 
different types of multivariation structures, this study explores students’ reasoning about these 
structures. Our initial assumption that multivariational reasoning would be built on covariational 
reasoning appeared validated, and there were also several other aspects of reasoning employed in 
making sense of these structures. There were important similarities in reasoning about the different 
types of multivariation, as well as some nuances between them. 
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Covariation and the cognitive activities involved in reasoning about it have become important 
themes in mathematics education research (e.g., Johnson, 2012; Moore, Paoletti, & Musgrave, 2013; 
Oehrtman, Carlson, & Thompson, 2008; Thompson, 1994; Thompson & Carlson, 2017). Yet, work 
on co-variational reasoning has essentially been limited to examining two variables changing in 
tandem with each other. Mathematical and scientific contexts often include more than two variables 
that are potentially related to each other. For example, the quantities pressure, volume, and 
temperature of a fix amount of gas inside of a flexible container are given by 𝑃𝑉 = 𝑘𝑇, where P, V, 
and T could all be changing simultaneously. Mathematical functions of more than one variable, 
𝑧 = 𝑓(𝑥, 𝑦), also contain this feature. Note that we use “variable” in this paper to generically mean 
any potentially varying value, including values of real-world quantities as well as mathematical 
function inputs and outputs. 

Recently, Jones (2018) used the term “multivariation” to theoretically describe situations where 
more than two variables relate to and change with one another. However, we do not yet have 
empirical data on the reasoning students might employ in making sense of these situations. This 
study was intended to explore, open-endedly, types of reasoning students might use when asked to 
think about multivariation structures. We went into this study with the assumption that 
multivariational reasoning would be related to covariational reasoning. Thus, our guiding research 
question was as follows: When analyzed through the lens of previous work on covariational 
reasoning, what reasoning mental actions are observed in students as they are asked to discuss 
different multivariational structures? 

Background Research on Covariation 
Because of our assumption that multivariational reasoning would be closely connected to 

covariational reasoning, we briefly review here some research work on covariation (see Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002; Castillo-Garsow, 2012; Johnson, 2015; Thompson & Carlson, 
2017). The central theme to this work is that covariation consists of imagining “two quantities [i.e. 
variables] changing together” (Castillo-Garsow, 2012, p. 55) in which “they are changing 
simultaneously and interdependently” (Johnson, 2012, p. 315). The work of Carlson et al. (2002) 
provided the field with a framework of covariational reasoning mental actions, and then the more 
recent work of Thompson and Carlson (2017) heavily revised this into a new framework. For our 
purposes, we use the newer framework by Thompson and Carlson, though we draw on one major 
aspect of Carlson et al.’s original work. In particular, in Carlson et al.’s (2002) original framework, 
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the first mental action of covariational reasoning was (1) coordinating one variable with changes in 
another. We believe this to essentially mean that students recognize the dependence between two 
variables, in that they perceive a change in one to correspond to a change in another (see also 
Oehrtman et al., 2008). This first mental action did not find its way into the revised framework by 
Thompson and Carlson, but it is important to our study because of the connections it has to some of 
our results.  

Beyond this first mental action, we then used the revised framework (Thompson & Carlson, 2017) 
for the remaining mental actions. These subsequent mental actions are: (2) imagining related, but 
asynchronous changes in variables (precoordination), (3) imagining generic increases/decreases 
between the variables (gross coordination), (4) coordinating the variables’ values (coordination of 
values), (5) coordinating changes in variables’ values in “chunks” (chunky continuous) and (6) 
imagining changes in the variables’ values happening smoothly (smooth continuous). These six 
mental actions were used in our study as baseline codes to categorize and organize student 
statements, as described in the methods section. We also extended this work by identifying new 
mental actions pertinent to multivariational reasoning. 

Multivariation 
Multivariation consists of situations where more than two variables are related to and possibly 

changing in conjunction with each other (Jones, 2018). Conceptual analysis has revealed different 
possible types of multivariation, which we recap in this section. 
Independent Multivariation 

Jones (2018) described independent multivariation as situations where certain variables can be held 
constant while others vary. For example, in 𝐹 = 𝐺𝑚𝑀 𝑟!, one can change the distance (r) to 
produce a different amount of force (F), while keeping mass (m) constant. Multivariable functions, 
𝑧 = 𝑓(𝑥, 𝑦), typically also behave in this way. Yet, in independent multivariation, what is held 
constant and what can change can be switched. In 𝐹 = 𝐺𝑚𝑀 𝑟! one can keep the distance (r) the 
same to see how F and m might covary with each other. It is critical to note, though, that independent 
multivariation is more than simply the covariation of two variables while holding the others constant. 
Rather, one can imagine multiple variables changing at the same time. For example, in 𝐹 =
𝐺𝑚𝑀 𝑟!, r and m could both be changing simultaneously, each impacting how F changes. In 
𝑧 = 𝑓(𝑥, 𝑦), one could trace a path in ℝ2 in which both x and y change at the same time, with z 
changing as one traces along that path (see also Martinez-Planell, Trigueros-Gaisman, & McGee, 
2015). Finally, another aspect of this multivariation is that it can include as many variables as 
desired, such as 𝑧 = 𝑓(𝑥!, 𝑥!,… , 𝑥!) having n+1 variables. 
Dependent Mulvariation 

Next, Jones (2018) described dependent multivariation as situations in which it is not possible to 
hold some variables constant while changing others. A change in any one variable in this situation 
will produce simultaneous changes in all other variables. Some real-world contexts exhibit this 
behavior (Bucy, Thompson, & Mountcastle, 2007; Roundy et al., 2015), such as 𝑃𝑉 = 𝑘𝑇. If the gas 
inside the flexible container is heated up, the increase in temperature (T) would cause simultaneous 
changes in both the internal pressure (P) and volume (V). As another example, in free-market 
economics, if one changes the price of a commodity, both demand and supply will react 
simultaneously. It may not be realistic or even possible to hold “demand” constant to observe only 
changes in supply. Similarly, for parametric functions in mathematics, 𝑥 𝑡 , 𝑦(𝑡) , if one changes t, 
then x and y both change simultaneously. 
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Nested Multivariation 
Third, Jones (2018) described nested multivariation as situations where the variables are related in a 

function composition structure. In the structure 𝑧(𝑦 𝑥 ), as one imagines a change in x, there is a 
corresponding change in y. That change in y then automatically corresponds to a change in z. It may 
be necessary sometimes to perceive the intermediary variable if it is not explicitly labelled, such as 
𝑦 = 𝑠𝑖𝑛!(𝑥) consisting of the quantities x, sin(x), and y. As x changes, sin(x) changes, which in turn 
makes y change. Of course, it is possible to conceptualize two-variable covariation between x and y 
directly in this example. However, a complete understanding of their relationship would require 
interpreting the intermediary sin(x) value (see also Breidenbach, Dubinsky, Hawks, & Nichols, 
1992). Otherwise, for instance, if x decreases into negatives, the values of y might not be accurately 
tracked. Real-world quantities can also have this nested structure. For example, in the theory of 
relativity, as an object’s velocity changes, the object’s mass changes, given by = 𝑚! 1 − 𝑣! 𝑐! . 
As the velocity (v) changes, the ratio between it and the speed of light (v/c) changes, which in turn 
changes the Lorenz factor 1 1 − 𝑟𝑎𝑡𝑖𝑜 !, which in turn changes the mass (m) (see also Jones, 
2015).  

Study Methods 
To document students’ multivariational reasoning, we recruited 10 undergraduate students to 

participate in interviews, referred to as Students A–J. Students E, G, and J were female and the others 
male. Because our study was exploratory in terms of the types of reasoning students might use, we 
decided to recruit students who were more advanced in their mathematical studies, to better ensure 
that they had had exposure to and experience with multivariational contexts. Similar to how Carlson 
et al. (2002) recruited second-semester calculus students to investigate covariational reasoning, we 
recruited students in multivariable calculus (from two different classes) to investigate 
multivariational reasoning. In the interview, the students were given two contexts for each type of 
multivariation (Table 1). These contexts were chosen for their connection to the conceptual analysis 
that helped define multivariation (Jones, 2018). For each context, the students were allowed to clarify 
the context first, and then were asked, “What does this equation/formula mean? What does it say 
about the variables in it?” The students open-endedly discussed the context, but were also asked 
several scripted questions, including how the variables related to each other, how changes in one 
variable impacted the others, whether multiple variables could change at the same time or whether 
variables could remain unchanged, and what impact increases or decreases in certain variables might 
imply. 

Table 1. Contexts Given to the Students in the Interviews 
Multivariation Context 1 Context 2 
Independent Let 𝑧 = 𝑥! − 𝑦!  be a function of 

two variables. [The function’s graph 
was also given to the student.] 

The formula 𝐹 = !"#
!!

 relates gravitational 
force (F) with mass (m) and distance (r). M 
(Earth’s mass) and G are constants. 

Dependent For a certain amount of gas in a 
flexible balloon, PV = kT relates 
pressure (P), volume (V), and 
temperature (T).  

The price (p) of a specific book is related to 
the number of books people want to buy (d for 
demand) and number of books the publisher is 
willing to print (s for supply). 

Nested Let y = sin(x) and z = y2. In other 
words, z = sin2(x). 

𝑚 = !!

!! !! !!
 relates an object’s mass (m) 

to its velocity (v). Note that mo is the “resting 
mass” and c is the speed of light. 
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Our analysis was based on our assumption that multivariational reasoning would be related to 
covariational reasoning, though also extended beyond it as well. Thus, our initial analysis consisted 
of using the covariation mental actions described previously as starting codes. We marked any place 
in the data where a student exhibited reasoning behaviors similar to one of the covariational 
reasoning mental actions. While we did, we also used open coding to mark any reasoning instances 
that did not align with one of the covariational reasoning mental actions. After doing so, we 
examined these “other” reasoning instances in order to identify themes among them. This led to the 
emergence of new codes that were not a part of the covariational reasoning mental actions. Once we 
had our final set of codes, we recoded the entire data set again, using our completed coding scheme. 
Then, within each of independent, dependent, and nested multivariation contexts, we compared the 
reasoning used across the 10 students. We looked for trends in how the students tended to reason 
about each multivariation type. We also compared the reasoning used in one type of multivariation 
with reasoning used in another to identify if certain kinds of reasoning were distinctive to one type of 
multivariation or common across them. 

Results 
Our first main result was that the students did, in fact, employ much covariational reasoning within 

these multivariation contexts, supplying evidence for our assumption that multivariational reasoning 
is rooted in covariational reasoning. We observed all of the mental actions from Thompson and 
Carlson (2017) in our students. In fact, as seen subsequently, imagining only two variables at a time 
was a common and useful action that students did. Space constraints do not permit a full treatment of 
how each aspect of covariational reasoning was observed, and we instead focus the remainder of our 
results on reasoning mental actions specific to multivariation. 
Students’ Independent Multivariational Reasoning 

In the independent multivariation contexts, all 10 of our students engaged in reasoning that was 
related to Carlson et al.’s (2002) first recognize dependence mental action. Yet, a slightly different 
aspect of that reasoning in these contexts was a similar mental action we call recognize 
independence. In this, the students decided which variable was to be treated as constant and which 
were to vary. For example, one of the first things Student B said when shown 𝑧 = 𝑥! − 𝑦! was, “x 
and y are variables, independent variables. Which basically means as one changes the other doesn’t 
necessarily have to change.” In 𝐹 = 𝐺𝑚𝑀 𝑟!, Student C stated, “As I am getting farther from the 
earth with a bowling ball, I’m not changing the mass of the bowling ball.” Recognizing independence 
then permitted the students to use another new mental action that we call decompose into isolated 
covariations. For instance, when discussing 𝑧 = 𝑥! − 𝑦!, Student D early on stated, “Whether x is 
increasing or decreasing… it is going to be increasing the z either way.” Then a few statements later, 
Student D described, “Let’s just pretend that the x2 doesn’t exist and we’re only playing with the y2… 
We see the parabola for y, which is negative, it starts at the origin and then curves down in both 
directions.” Here, Student D simplified the context to two variables at a time in order to understand 
the covariational relationships between x-z and y-z. After using this mental action to reduce the 
multivariation to covariation, covariational reasoning mental actions were then used to analyze that 
relationship between those two particular variables. 

In conjunction with recognizing independence and decomposing into covariations, a third new 
mental action we observed was that students could switch constants/variables, in which they shifted 
their conceptualization of which variables were held as constant and which were allowed to vary. For 
example, a little after the previous excerpt, Student B explained, “If we follow this path x = y, our z 
stays constant.” Similarly, Student C later stated, “Increasing the mass, getting a pebble compared to 
a rock and having them the same distance from the earth, I have increased the mass but the distance 
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is still the same.” These students demonstrated they were able to reason from different perspectives 
within the same context in terms of what changes or stays the same. 

The students were also able to perform mental actions regarding the variables all changing at the 
same time. We call one such mental action imagining simultaneous changes in inputs. In this mental 
action, two variables were considered the “inputs” and their changes were imagined as linked 
together before then coordinating this with the variable considered to be the output. To illustrate, in 
discussing 𝑧 = 𝑥! − 𝑦!, Student H explained, “I could move simultaneously in both an x direction 
and a y direction. That’s going to determine how my z direction is changing… If I’m changing my x 
and my y at the same time, then z can potentially change as well.” 

Building on imagining simultaneous changes, another mental action for independent multivariation 
was what we call coordinate these multiple simultaneous changes. For example, in the force context, 
after Student G had first decomposing into isolated covariations and then subsequently imagined 
simultaneous changes, she explained, “Say the mass is increasing and the distance is also, r is 
decreasing, then the force would definitely be increasing.” This mental action consists of aligning the 
results of the isolated covariations together into an overall image of all the variables’ changes. 
Student G also considered the possibility of m and r both increasing or both decreasing. She 
explained, “If the mass and the distance are both increasing or both decreasing, then it gets a little bit 
iffy. It depends on which one has a greater impact. [Pause] If m is increasing, at a rate that’s greater 
than the rate at which r2, the distance squared, is increasing, then the force will still increase.” Here 
we can see Student G comparing the covariations between m and F and r and F. She decided that if m 
changes by more than r2, then the positive covariation between m and F will overcompensate for the 
negative covariation between r and F.  

In Student G’s explanation, we also see another important mental action. Here, she did a mental 
action close to what Thompson and Carlson (2017) call coordinating values, but she did so without 
ever using specific numeric values. Thus, from our study, we decided that covariational and 
multivariational reasoning research would benefit from separating out what we call qualitative 
amounts of change versus numeric amounts of change. In other words, Student G was able to 
qualitatively image that the increase in F due to a large increase in m would be larger than the 
decrease in F due to a smaller increase in r2. She could have done this by using specific numeric 
values, but her coordination at the qualitative level was productive for what she wanted to 
accomplish. We see this mental action as applying to both covariation and multivariation. 

Lastly, another new mental action we saw was students attempting to articulate the type of 
relationship present between two or more variables. It appeared helpful for students to determine 
well-known relationships present between the variables. For example, for 𝑧 = 𝑥! − 𝑦! Student I 
explained, “You maybe pick some value of x and keep it there and then you just basically have z = c 
– y2. So it’s just an upside parabola.” Visualizing a parabola helped him think of how z and y would 
covary with each other. Students used other well-known relationships to assist imagining the 
situation, such as thinking of F and m as proportional, and F and r2 as inversely proportional. 
Students’ Dependent Multivariational Reasoning 

Recall it is not possible to hold some variables constant in dependent multivariation. Thus, an 
important mental action students used was, again, recognize independence/dependence. Yet, the way 
this mental action was carried out varied from student to student. For instance, in the PV = kT 
context, Student H explained, “So, if my temperature were increasing… I can think of both my 
pressure and my volume increasing. The balloon is getting bigger and the pressure inside it is 
increasing.” Here, Student H envisions a dependent relationship between all three variables 
simultaneously. However, when Student A was asked if T could change so that only P changes, 
without V changing, he explained, “If you just keep, I mean, is this according to the equation? 
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According to the equation, then I would say yeah [V can be kept constant], because if V is constant 
and P increases, then T would increase.” Student A did accept that all three could be changing 
simultaneously, but also observed that in the mathematical equation, one can leave one as constant. 
These examples illustrate two things. First, whether a context is independent or dependent 
multivariation consists, at least in part, in how the person conceptualizes it. Regardless of how things 
behave in the “real world,” if a student perceives that it is possible to hold some variables constant, 
then that is the type of situation they cognitively work with. Second, whether the students chose to 
conceptualize it as independent or dependent multivariation seemed connected with whether they 
believed they should operate mentally in a “math” world of the symbolic equations, or the way 
quantities behave in the “real” world. 

When students determined that they were in a dependent multivariation situation, they also often 
decomposed into isolated covariations. But, then, the mental action coordinate simultaneous changes 
became important. For example, after decomposing PV = kT into covariations, Student D stated, “If 
the balloon is being heated up, then its volume will greatly increase and its pressure will increase a 
little bit, depending on the capacity of the balloon to contract.” He put the individual relationships 
together into a coherent whole. However, an important difference in dependent multivariation is that 
the simultaneous nature of the changes is required, where it is not required in independent 
multivariation. This excerpt again shows qualitative amounts of change, because Student D imagined 
relative changes without using exact numeric values. As another example, Student J stated, “If the 
increasing amount of T is greater than either [the change in] P or V, that means both would be 
increasing.” She realized that if P and V both increase, they could not each increase relatively as 
much as T does by itself. Of course, students did engage in quantitative amounts of change, too, such 
as Student E examining what possibilities he could get for changes in P and V if temperature changed 
from “6 to 10.” 

Like for independent multivariation, in these contexts the students also spent time trying to 
articulate the type of relationship between the variables. For example, several students discussed 
“proportionality” between V and T, or “inverse proportionality” between P and V. In the supply and 
demand context, students also used ideas of proportionality and inverse proportionality. Some 
students tried to create a rough symbolic formula to relate them, which took the forms of 𝑝 ∝ !

!
 

(Student A), 𝑝 = 𝑘 !
!
 (Student B), 𝑝 = 𝑑 − 𝑠 (Student F), and 𝑑 = !

!
 (Student H). Note that different 

relationships can be seen depending on which quantity was seen as changing first. For example, if 
price is seen to increase first, that might signal a decrease in demand. Alternatively, if demand 
increases first, that might signal an increase in price. Other students drew graphs of p versus d and p 
versus s that matched these equations. Articulating these relationships seemed to help students 
organize their thinking about relative changes between the variables. In particular, Student J drew the 
familiar supply and demand curves (Figure 1) and used them to help her organize her thinking of 
relative changes. She first imagined that where the decreasing demand curve intersected the 
increasing supply curve defined the price. An increase in demand was represented as a shift upward 
in the demand curve, which resulted in an intersection point at a higher supply and higher price (left 
image). Similarly, an increase in price (right image) resulted in a point lower along the demand curve 
but higher along the supply curve. This kind of reasoning seems to suggest another possible mental 
action, identifying order of effect between variables. 
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Figure 1: An example of articulating relationships helping students organize their thinking 

 
Students’ Nested Multivariational Reasoning 

For this type of multivariation, as with the other types of multivariation, the students employed 
mental actions regarding recognizing relationships. In this case, the students attempted to recognize a 
chain of influence from one variable to the next. For example, with 𝑧 = 𝑠𝑖𝑛!(𝑥), Student E imagined 
an intermediary quantity in the chain. She explained, “So, you put the x in, the x gets sine’d, and then 
that sine gets squared. So, it goes in like step one, it’s turned into a sine, and then step two that sine is 
squared.” Student E recognized that there was (a) the initial x value, (b) the sine of that x value, and 
(c) the square of that sine value. In the mass-velocity context, Student E similarly explained, “The 
velocity is never going to be more than the speed of light. So, this [points to 𝑣! 𝑐!] is always going 
to be less than one, which means this [point to 1 − 𝑣! 𝑐! ] will always be positive. But the more 
velocity increases, the closer this [points to 𝑣! 𝑐!] is going to get to one, which means the smaller 
the denominator [e.g., 1 − 𝑣! 𝑐!] is going to get, which means the larger the mass is going to be. 
So, the larger velocity gets, the larger mass gets.” In this, Student E conceptualized explicitly the 
quantities (a) v, (b) 𝑣! 𝑐! , (c) 1 − 𝑣! 𝑐! , and (d) m. Several other students gave similar 
descriptions of these two contexts. 

Once the chain of influence had been recognized, students again often used decompose into isolated 
covariations. To illustrate, as Student B thought about 𝑧 = 𝑠𝑖𝑛!(𝑥) he described, “As x changes, 
we’re going to end up with y having this oscillating pattern… between positive and negative one 
repeatedly. So, as you increase x, your y is going to be jumping between 1 and –1. If you decrease x, 
same thing… If y is positive, as we increase y, z will go up. If y is negative and we decrease y, z will 
also go up.” Student B first examined x and y in isolation and then y and z in isolation. As before, 
these isolated covariations then needed to be coordinated into an overall image of the nested 
multivariation. Additionally, students also employed coordination of increases and decreases, 
including both qualitative amounts and numeric amounts. 

Once students had completed mental actions of recognizing a chain of influence, decomposing into 
isolated covariations, and coordinating increase/decrease, these seemed to help students understand 
the direct relationship between the “initial input” variable (i.e. x and v) and the “final output” variable 
(i.e. z and m). They could take their new knowledge about the context and begin to work with direct 
covariation between the initial input and the final output. They did not necessarily need to work with 
the intermediary variables anymore. For example, after working through the nested reasoning, 
Student A summarized the velocity-mass context as follows, “As it’s [v] changing, so if this gets 
bigger, then m would get bigger as well… So, if this [v] increases, m would increase and if this [v] 
decreases, m would decrease.” Thus, one part of understanding nested multivariation structures might 
be to eventually conceptualize the direct two-variable covariation between the two most salient 
variables of interest. 

As a last note, some students also attempted to circumvent the need for nested reasoning for 
𝑧 = 𝑠𝑖𝑛!(𝑥) by instead using visual reasoning on the graph of sin2(x). They first took the graph of 
sin(x) and attempted to reason what the square of that graph looked like. Once they had a graph 
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(whether correct or incorrect), the students then used that graph to vary x and report directly on its 
impact on the values of z. 

Discussion 
First, we observed that covariational reasoning was, in fact, an important part of these 10 students’ 

reasoning. In all three multivariation types, students often decomposed the context to two-variable 
covariations at a time to organize their thinking. However, we note that this decomposition into 
covariations has connection to what Johnson (2015) termed simultaneous yet independent variation. 
In her work, she explained that students sometimes covaried two variables with time and then tried to 
coordinate the variables only through the intermediary of time. Johnson concluded that a full 
comprehension requires students to not need the intermediary of time, and to imagine the variables 
changing directly in relation to each other. Likewise in multivariation, it may be important for 
students to push past decomposition into covariations to imagining a single coherent image of the 
whole multivariational structure. Some of our students were able to compile the individual 
covariations to create a holistic image of the multivariation. 

Next, our study extends covariational work by elaborating on coordination of values from the 
Thompson and Carlson (2017) framework. We suggest it be split into two types of coordination: 
qualitative amounts of change versus numeric amounts of change. Our students productively 
described “large” or “small” changes qualitatively to reason about a context. This mental action 
certainly goes beyond gross coordination. We even hypothesize that it may even be more complex 
than simply inserting numeric values into a formula and comparing resulting values (i.e. coordination 
of values), because it requires one to imagine relative sizes in changing values and coordinate them 
without the aid of specific numeric values. We perhaps even see chunky continuous coordination 
(Castillo-Garsow, 2012; Thompson & Carlson, 2017) as just adding intervals of a fixed size to 
qualitative amounts of change. Thus, we wonder if qualitative change may be between what is 
currently described as coordination of values and chunky continuous coordination. Of course, 
additional work would be required to examine if that is the case. 

Third, another key idea from our study is that it requires cognitive work to recognize dependence 
and independence among the variables in multivariation. Students spent time imagining what 
variables could be held constant, which varied, which depended on which, and whether that 
dependence could be altered. In a recent paper, Kuster and Jones (2019) similarly noticed the 
importance of “recognize” in students using variational reasoning while discussing differential 
equations. They claimed that it may have been an oversight to drop “recognize” from the original 
covariational framework (Carlson et al., 2002) in the new framework (Thompson & Carlson, 2017). 
Our data concurs that it may be important to keep mental actions of “recognize” in variational 
reasoning frameworks, because of how important it is for more complicated variational structures. 
This suggests that in moving our students from covariation to multivariation, it may be useful to 
spend time engaging students in recognizing activities. It is possible we do not help students see, for 
example, the difference between independent and dependent contexts (see Bucy et al., 2007; Roundy 
et al., 2015). 

Finally, we saw that there was much similarity in the types of reasoning across the different 
multivariation contexts. The good news is that it might not be necessary for students to learn about 
each type of multivariation separate from the others. By learning to reason about one type, they may 
simultaneously be developing reasoning abilities that transfers to other types. However, by being 
explicit about the different types, we as instructors might help students gain an appreciation for the 
nuances that exist between each type, enabling stronger reasoning. 
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