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Texts presenting novel statistics can shift learners attitudes and conceptions about controversial 
science topics. However, not a lot is known about the mechanisms underlying this conceptual 
change. The purpose of this study was to investigate two potential mechanisms that underlie learning 
from novel statistics: numerical estimation skills and epistemic cognition. This research investigated 
two treatments—a numerical estimation and epistemic cognition intervention—that were expected to 
enhance people’s ability to make sense of key numbers about climate change. Results indicated that 
undergraduate students (N = 516) who were given instruction on numerical estimation strategies 
before shown novel climate change statistics had fewer misconceptions when compared with people 
who did not. Findings provide emerging evidence that supporting mathematical reasoning skills can 
enhance conceptual change in science. 

Keywords: Numerical Estimation, Epistemic Cognition, Conceptual Change, Plausibility Judgments, 
Mathematics For Sustainability 

Now more than ever, people need to be skeptical of the information that they encounter online. 
Inaccurate, self-authored misinformation is being created and circulated at an alarming rate (see, e.g., 
Allcott, Gentzkow, & Yu, 2019; Kata, 2012). Internet searches for controversial science topics like 
climate change, genetically modified foods, and vaccinations reveal millions of articles, much of 
which include scientifically incorrect information (e.g., Kortum, Edwards, & Richard-Kortum, 2008; 
Scheufele, & Krause, 2019); and much of this misleading information relies on misleading data. 

Numerical data (e.g., statistics) found in the news can be a powerful tool for conceptual change, 
whether that change is for better or for worse. On the one hand, prompting people to estimate just a 
handful of statistics about climate change and then presenting them with the actual value can shift 
their attitudes, beliefs, and misconceptions to be more aligned with scientists (Ranney & Clark, 
2016). On the other hand, presenting people with misleading statistics can shift their scientifically 
correct conceptions and attitudes to be less aligned with those of scientists (Ranney & Clark, 2016). 
Taken as a whole, this research suggests that statistics can be used as a catalyst for conceptual 
change. However, the mechanisms that underlie this change process remain understudied. 

The purpose of this study was to examine mechanisms that underlie the learning that occurs when 
people encounter novel statistical information. Namely, I draw from theory on conceptual change 
(Dole & Sinatra, 1998, Lombardi, Nussbaum, & Sinatra, 2016), and epistemic cognition (the active 
reflection on whether information is true or justified; Chinn, Rinehart, & Buckland, 2014) to examine 
the impact of two mechanisms of conceptual change when learning from real-world numbers—
numerical estimation skills and epistemic cognition. 

Theoretical Framework 
Conceptual Change 

When individuals encounter statistics in the news or online that conflict with their prior 
conceptions, conceptual change may occur. Conceptual change represents a particular kind of 
learning that occurs when new information conflicts with a learners’ background knowledge, leading 
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to a restructuring of conceptual knowledge (Dole & Sinatra 1998; Murphy & Mason, 2006). 
Conceptual change researchers tend to describe concepts as either consistent or inconsistent with the 
understanding of experts and many define conceptual change as a correction of scientifically 
inaccurate conceptions, or misconceptions. For example, if a person holds the misconception that 
scientists believe that humans are not responsible for climate change and reads a statement that “97% 
of scientists agree that climate change is caused by humans,” then there may be potential for the 
learner to question their idea and shift them to be more consistent with scientists. In this way, a single 
number has the potential to instigate conceptual change. Of course, there are many contributing 
factors and processes left unexplained in in this simplistic example, as conceptual change can be 
viewed as a process that is contingent upon people’s motivation, emotion, and attitudes—factors that 
are often called warm constructs (see Dole & Sinatra, 1998; Pintrich, Marx, & Boyle, 1993; Sinatra, 
2005; Sinatra & Seyranian, 2016). As such, the extent to which people engage with and learn from 
numerical data may be influenced by motivational factors such as their beliefs about their ability to 
succeed in mathematics (self-efficacy; e.g., Bandura, 1997), or emotional factors such as their trait-
level anxiety associated with engaging in mathematics (mathematics anxiety; e.g., Ramirez, Shaw, & 
Maloney, 2018). 

Plausibility judgments for conceptual change. When individuals encounter a novel statistic, they 
may implicitly or explicitly judge whether that information is plausible and then shift their 
conceptions accordingly. Research on plausibility judgments for conceptual change offers a useful 
frame for investigating these shifts in understanding. The Plausibility Judgments for Conceptual 
Change model (PJCC), posits that novel information (like novel statistics) can incite conceptual 
change because they prompt learners to appraise or reappraise the plausibility of their existing beliefs 
(Lombardi et al., 2016). When people encounter a novel explanation like a statistical figure, they first 
pre-process the information (e.g., by employing numerical estimation skills to judge the 
reasonableness of the number), and then make a judgment of the plausibility of the conception 
supported by the new information. Plausibility judgments can be either implicit or explicit. The 
extent to which people explicitly evaluate the plausibility of a conception depends, in part, on their 
views about knowledge (epistemic motives and dispositions); more explicit plausibility evaluations 
are thought to lead to greater potential for conceptual change—but only if the learner finds the new 
conception to be more plausible than their previous conception. That is, learners process statistical 
information and then appraise the plausibility of their initial conceptions based on this information; 
learners that find a novel conception more plausible than prior conceptions have higher potential for 
conceptual change. 
Numerical Estimation 

One way that learners process numbers is by estimating whether they are reasonable (e.g., Reys & 
Reys, 2004). Research on measurement estimation concerns the explicit estimation of real-world 
measures (Bright, 1976; Sowder & Wheeler, 1989) and is useful for understanding factors that help 
people judge whether real-world quantities are reasonable. Findings suggest that peoples’ estimation 
accuracy and judgments of reasonableness improve when they use measurement estimation 
strategies, such as the benchmark strategy—the use of given standards and facts that can be applied 
by the learner through mental iteration and proportional reasoning to better estimate and judge the 
plausibility of real-world quantities (e.g., Brown & Siegler, 2001; Joram et al., 1998). For example, a 
person’s estimate of the number of jellybeans in a container is likely to be more accurate and they 
will be a better judge of reasonableness of other peoples’ guesses if they are first told the number of 
jellybeans in a different container. Measurement estimation strategies may therefore support people’s 
comprehension and evaluation of given real-world quantities. 
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Epistemic Cognition 
Epistemic cognition is the thinking that people do about knowledge and knowing (Chinn, et al., 

2014; Sandoval, Greene, Braten, 2016) and is hypothesized to predict the extent to which learners 
evaluate the plausibility of a claim in light of new information (Lombardi et al., 2016). There are 
multiple models of epistemic cognition (for a review, see Sandoval et al., 2016), but for the purpose 
of this study, I draw from the AIR model of epistemic cognition (Chinn et al., 2014). According to 
this model, epistemic cognition is considered to be a situated process that relies on individuals’ Aims 
(goals and associated values of goals), Ideals (espoused standards for achieving epistemic aims), and 
Reliable processes for knowing (schema for producing true, justified beliefs; Chinn et al., 2014). 
An Existing Learning Intervention: EPIC 

Prior classroom and laboratory studies have demonstrated the impact of presenting people with 
surprising numbers about controversial topics on their understanding of social issues (for reviews, 
see Ranney et al., 2019; Yarnall & Ranney, 2017). Many of these studies are grounded in a paradigm 
called “Numerically Driven Inferencing” (NDI, Ranney, Cheng, Garcia de Osuna & Nelson, 2001; 
Ranney & Thagard, 1988), which assumes that individuals’ understanding of numerical information 
is connected to their knowledge, attitudes, and beliefs about larger issues. One of the central 
techniques from this perspective is called EPIC, an acronym for an intervention which introduces 
novel numerical information by prompting learners to Estimate quantities, state a Preference for what 
they would like the quantity to be, Incorporate the answer, and then Change their preferences 
afterward (e.g., Ranney & Clark, 2016; Rinne et al., 2006). Studies that use EPIC often 
operationalize conceptual change in terms of shifts in the preferences that individuals state for given 
numbers (i.e., differences between the “P” and the “C” in EPIC).  

In sum, I contend that in order for learners to select high quality content from which to learn, they 
must develop skills to evaluate epistemic aspects of new information and also develop estimation 
skills necessary to accurately evaluate the statistics that they encounter along the way. That is, they 
must learn epistemic cognition and numerical estimation skills. Currently, there is little to no 
empirical research that investigates the role of estimation skills and epistemic cognition in conceptual 
change processes. My research is therefore guided by five questions:  

1. To what extent does estimation of and exposure to novel statistics regarding climate change 
(i.e., an adapted EPIC intervention) shift learners’ knowledge of climate change? 

2. To what extent does enhancing this intervention with instruction on estimation strategies 
change learners’ knowledge of climate change? 

3. To what extent does enhancing this intervention with prompts to activate epistemic aims 
change learners’ knowledge of climate change? 

4. Is there an interaction between estimation skills and epistemic thinking on conceptual change? 
5. To what extent do warm constructs (i.e., mathematics anxiety, mathematics self-efficacy, 

epistemic dispositions, and reported surprise from reading statistical information) mediate 
relations between pre- and post-intervention knowledge? 

Methods 
To answer my research questions, I formed a nationally representative Qualtrics panel of 516 

undergraduate students to participate in an experimental online survey. Participants’ median reported 
age was 20years, and 81% identified as Female, 64% White, 11% African American, 9% Asian, 9% 
Hispanic, and 43% as either Liberal or Very Liberal. All participants (a) completed a pretest to 
measure their misconceptions about climate change, mathematics self-efficacy and anxiety, and prior 
epistemic dispositions, (b) were randomly assigned to one of five conditions created by a control 
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group and combinations of two interventions (see below), and (c) completed an identical post-test of 
knowledge and a demographics questionnaire. 
Outcome Measure 

Knowledge. Knowledge of human-induced climate change was a primary outcome in this study and 
was measured using seven items from the 28-item human induced climate change knowledge 
questionnaire (HICCK; Lombardi, Sinatra, & Nussbaum, 2013). Construct and content validity of the 
abbreviated scale was established through pilot studies and cognitive interviews (see Thacker, 2020). 
The knowledge questionnaire was given to participants just prior to and immediately after instruction 
and was intended to measure participants’ conceptions about the consensus on human-induced 
climate change and were selected to align with information presented in the EPIC intervention. For 
example, participants rated their agreement with statements such as, “greenhouse gas levels are 
increasing in the atmosphere” on a scale from 1 (strongly disagree) to 5 (strongly agree). The 
measure at pre and posttest was reliable at conventional levels (Cronbach’s alpha = .85 pre, .88 post). 
Covariates 

Mathematics Self-Efficacy and Anxiety Questionnaire (MSEAQ). Participants mathematics-
specific self-efficacy and anxiety were measured using the Mathematics Self-Efficacy and Anxiety 
Questionnaire (MSEAQ; May, 2009). The MSEAQ consists of 28 items that can be divided into two 
subscales, mathematics self-efficacy (13 items) and mathematics anxiety (15 items). Construct 
validity was established in a prior study using factor analytic methods with an online sample and by 
establishing strong correlations with a classic measures of mathematics anxiety (s-MARS) and 
mathematics self-efficacy (see May, 2009). The instrument was shown to be reliable overall 
(Cronbach's Alpha = .96), as were the two subscales for mathematics self-efficacy (Cronbach's Alpha 
= .94) and mathematics anxiety (Cronbach's Alpha =.93). Average scores for the two subscales were 
computed and used in mediation analyses.  

Epistemic dispositions. Baseline epistemic dispositions were measured using the Actively Open-
Minded Thinking scale (AOT; Stanovich & West, 1997). The AOT is a measure of epistemic 
dispositions toward knowledge that consists of seven items. Participants reported their agreement 
with five statements (e.g., “Changing your mind is a sign of weakness”) on a scale from 1 
(completely disagree) to 7 (completely agree). The Chronbach’s alpha was found to be .70 with the 
main analytic sample. The AOT was included in mediation analyses to observe whether epistemic 
dispositions mediate conceptual change outcomes, as inferred from the Plausibility Judgments for 
Conceptual Change model (Lombardi et al., 2016). 

Surprise. Participants in the main analytic sample who were assigned to estimate quantities about 
climate change by way of the EPIC intervention were also prompted to report their sense of surprise 
after being shown the true values. Namely, participants were asked to “Rate how surprised you are 
by this number” on a scale from 1 (not at all) to 7 (extremely surprised). Surprise ratings had 
Cronbach’s alpha = .82. Similar to prior research (e.g., Munnich et al., 2007), I expected that 
participants’ sense of surprise from exposure to novel statistics would correspond with change in 
climate change beliefs. Participants in the control group did not estimate climate change numbers and 
therefore were not prompted to report surprise. 
Interventions and Experimental Conditions  

Participants were randomly assigned to one of five conditions: (1) a control group in which 
participants were presented with an 817 word expository text about the greenhouse effect (2) the 
EPIC task; (3) the EPIC task accompanied with an estimation skills modification that presents 
learners with strategies for using the given “hints,” (4) an EPIC task accompanied with an epistemic 
cognition modification, or (5) an EPIC task accompanied by both estimation and epistemic cognition 
modifications. These interventions and modifications are described below. 
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The EPIC task required learners to estimate 12 climate change-related quantities before being 
presented with the scientifically accepted answer. Six of these items were taken from Ranney & 
Clark (2016) and asked participants to estimate unitless proportions. The remaining six were created 
by Thacker (2020) to be more mathematically challenging, requiring participants to estimate raw 
units of length, area, volume, mass, and temperature and included a “hint” that might be rescaled to 
better estimate the unknown quantity (see Table 1 for sample items). 

The estimation skills modification consisted of a 132-word text that provided direct instruction on 
how to use the “hints” embedded in half of the EPIC items to more accurately estimate unknown 
numbers followed by two interactive examples (see Table 1 for an excerpt). The epistemic cognition 
modification was intended to activate epistemic aims and consisted of an open answer text-box that 
appeared after each of the twelve number estimates, prompting participants to “...reflect on the 
differences between your estimate and the true value. How does the true value change what you 
know about climate change or the way you think about climate change? Explain.” This prompt was 
intended to activate epistemic aims. 

 
Table 1. Sample Items from the EPIC Intervention and Modifications to the Intervention. 

Sample EPIC Items 

Source # of 
items 

Sample item Correct 
Answer 

Ranney & Clark 
(2016) 

6 What is the change in percentage of the world’s ocean ice cover 
since the 1960s? (units in %) 

40% 
Decrease 

Thacker (2020) 6 What was the average Arctic Sea ice thickness in 2008?  
Hint: Arctic ice thickness was 3.64 meters in 1980 

1.89 meters 

Excerpt from Numerical Estimation Strategies Modification 

Numbers that you already know can help you estimate numbers that you do not know. For example, if you know 
that about 300 pennies fit in a small, 8oz milk carton, you can use this information to estimate the number of 
pennies that fit in a larger container…   
When using benchmarks, you may want to round values to make mental computation easier. For example... 

Excerpt from Epistemic Cognition Instruction Modification 

...Please reflect on the differences between your estimate and the true value. How does the true value change what 
you know about climate change or the way you think about climate change? Explain. 

Results 
Preliminary analyses revealed no significant differences in pre-intervention knowledge between 

conditions (F = 1.54, p = .187). Skew ranged from -.78 to -.34 and kurtosis ranged from .01 to .36 for 
the revised knowledge measure though both failed the Shapiro-Wilk normality test (p < .001 for both 
pre- and post-knowledge), as such, both classic and robust analyses are presented. An initial omnibus 
test revealed significant differences between the five conditions when the seven-item knowledge 
score at post-test was used as the main outcome (F = 3.126, p = .0147). This finding was 
corroborated with nonparametric ANOVA analyses using a Kruskal-Wallis rank sum test (Kruskal-
Wallis Chi-squared = 17.18, df = 4, p = .001). Raw means and standard deviations by condition and 
overall for all variables are shown in Table 2. 
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Table 2. Descriptives by Condition for the Main Analytic Sample of N = 516 Undergraduate 
Students. 

  Min, 
Max 

Alph
a 

Full Sample 
(n=516) 

Control 
(n=103) 

EPIC 
(n=103) 

EPIC+EC 
(n=103) 

EPIC+EST 
(n=104) 

EPIC+EC+EST 
(n=103) 

     Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Knowledge 

(Pre) 
1, 5 .85 3.88 0.60 3.82 0.58 3.98 0.56 3.84 0.66 3.93 0.53 3.81 0.66 

Knowledge 
(Post) 

1, 5 .88 4.08 0.75 3.88 0.66 4.20 0.72 4.06 0.78 4.19 0.68 4.06 0.80 

Knowledge 
Gain 

(Post − Pre) -4, 4 na 0.20 0.57 0.06 0.42 0.22 0.50 0.22 0.73 0.26 0.49 0.25 0.65 
Active Open 
Mindedness 

5, 5 .70 4.84 0.86 4.74 0.81 5.03 0.89 4.83 0.83 4.83 0.89 4.78 0.85 

Mathematics 
Self-Efficacy 

1, 5 .94 3.27 0.87 3.31 0.97 3.20 0.81 3.33 0.83 3.24 0.86 3.29 0.87 

Mathematics 
Anxiety 

1, 5 .93 2.98 0.86 2.98 0.90 2.95 0.84 2.98 0.90 2.95 0.81 3.03 0.87 

Surprise (in 
Reaction to 
EPIC Items) 

1, 5 .82 2.83 0.73 NA NA 2.79 0.67 2.83 0.75 2.85 0.81 2.87 0.71 

 
Control versus all other conditions (RQ1). To address my first research question, I used contrasts 

to assess the knowledge of the control group compared with the combined average of the remaining 
four groups. A Welch’s two sample t-test revealed significant differences in mean post-intervention 
knowledge between control (M = 3.88) and EPIC conditions (M = 4.12, t = 3.23, p = .001, Cohen’s d 
= .33), as did Yuen’s method of trimmed means, bootstrapped T, and bootstrapped medians (all p < 
.009). In other words, students assigned to the EPIC conditions performed about one third of a 
standard deviation better on the seven-item knowledge posttest when compared with the control. 

Estimation intervention versus no estimation intervention (RQ2). To address my second 
research question, I first dropped the control from analysis to consider only the four EPIC conditions, 
and then used planned contrasts to compare those who were given estimation instruction with those 
who were not. A Welch’s two sample t-test revealed a marginally significant and positive impact of 
the estimation intervention on post-intervention knowledge (b = .09, SE = .05, p = .086). After 
adjusting for prior knowledge, nonparametric ANCOVA methods using a Thiel-Sen estimator 
revealed significant differences in post-intervention knowledge scores for those at the upper third 
(Difference = .31, 95% CI = 0.04-0.58) and fourth (Difference = .17, 95% CI = 0.08-0.27) of five 
evenly spaced points along the range of prior knowledge, a range that includes 67% of the analytic 
sample. In other words, the estimation intervention appeared to be effective in shifting knowledge for 
participants on the upper end of the prior knowledge range1. 

Epistemic cognition intervention versus no epistemic cognition intervention (RQ3). To answer 
my third research question, I again used contrasts to compare those who were given epistemic 
cognition prompts with those who were not after dropping the control from analysis. Contrasts 
                                                             
1 Pairwise comparisons using the Benjimani-Hochberg method revealed significant differences 
between post-intervention knowledge scores when comparing the control and unmodified EPIC 
intervention (p = .022, Cohen’s d = .46) and when comparing the control and EPIC supplemented 
with estimation strategy instruction (p = .026, Cohen’s d = .46). 
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revealed no significant differences on the revised knowledge scale at post-test, even after adjusting 
for prior knowledge. 

Tests for interactions (RQ4). To answer my fourth research question, I tested for main effects and 
interactions of the two modifications to the EPIC intervention. I first ran classic two-way ANOVAs 
followed by robust two-way ANOVAs using Johansen's heteroscedastic method for trimmed means 
(see Wilcox, 2017, Chapter 10). Both sets of tests revealed no significant main effects or 
interactions when post-intervention knowledge was the outcome. 

Mediating role of warm constructs (RQ5). To explore relations between prior knowledge, warm 
constructs, and post-intervention knowledge, I tested a hypothesized model inferred from Lombardi 
and his colleagues (2016; presented in Figure 1a.) using maximum likelihood estimation with robust 
(Huber-White) standard errors and a scaled Yuan-Bentler test statistic in R using Lavaan 0.6-3 
(Rosseel, 2012). The model resulted in acceptable fit at conventional levels (CFI = .99, TLI = .93, 
RMSEA = .077; Hu & Bentler, 1999). 

As expected, results revealed that warm constructs mediated relationships between prior- and post-
intervention learning outcomes (see Figure 1b for all coefficients). Notably, I found indirect effects 
of prior knowledge on post-test knowledge through active open-minded thinking (indirect effect = 
.059, p < .01). 
 

 
Figure 1a. Hypothesized model to address RQ5. 
Intercorrelations between warm constructs (surprise, 
mathematics anxiety, mathematics self-efficacy, and 
constructive epistemic dispositions) are included in 
the model but not shown in this figure. 

 
Figure 1b. Full path model. Only significant paths at the 
.05 level are shown. Intercorrelations between warm 
constructs were included in the model but not shown in this 
figure. Standard errors range between .010 and .132. 

Significance 
I sought to investigate whether the learning that occurs when people encounter novel statistics was 

enhanced with additional instruction on estimation strategies or prompts to activate epistemic aims. I 
found that students who learned from novel statistics performed about a third of a standard deviation 
better than a control group on a post-test of climate change knowledge, which is consistent with prior 
findings demonstrating the effectiveness of EPIC for climate change learning (e.g., Ranney & Clark, 
2016; Ranney et al., 2019).  

I also found that enhancing this intervention with numerical estimation instruction had a small but 
positive impact on students’ science learning; an effect that was concentrated among students in the 
upper range of the prior knowledge distribution. These findings provide emerging evidence that 
numerical estimation skills can be leveraged for improved scientific learning. Future research support 
students’ numerical estimation skills as applied to additional policy-relevant topics. 

Findings also revealed that prompts to activate epistemic aims had no detectable effect on 
undergraduate students learning. To date, efforts to design micro-interventions intended to shift 
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epistemic dispositions are only emerging. Only longer interventions spanning the duration of several 
weeks have yielded impacts on patterns of epistemic thinking (e.g., Lombardi et al., 2013; Chinn & 
Buckland, 2012). More research is needed to explore whether such an intervention is possible. 
Related to this, I found no significant interactions between intervention conditions, likely due to the 
very small and insignificant effects of the epistemic cognition intervention. With improved 
intervention design, future research might explore whether such an interaction might exist. 

Though the brief online intervention created for this study was not found to shift learners’ epistemic 
dispositions, learners’ baseline epistemic dispositions were shown to be important mediators of 
conceptual change processes. Namely, a path model revealed that epistemic, motivational, and 
affective constructs were important predictors of conceptual change outcomes, as predicted by the 
Plausibility Judgments for Conceptual Change model (Lombardi et al., 2016), and that epistemic 
dispositions significantly mediated relationships between pre-intervention knowledge and post-
intervention knowledge.  

Conclusions 
Findings from this study contribute to better understanding the extent to which individuals shift 

their conceptions about climate change based on just a handful of novel statistics and illuminate 
mechanisms that underlie such conceptual changes. Evidence that epistemic cognition, estimation 
skills, motivational, and emotional factors play a role in conceptual change provide empirical support 
for the Plausibility Judgments for Conceptual Change model (Lombardi et al., 2016). Findings also 
provide emerging evidence that mathematical knowledge can be leveraged for conceptual change 
regarding scientific topics. By creating and testing instructional interventions, this study also 
provides both mathematics and science instructors and those concerned with public understanding of 
science with a collection of strategies for better preparing people with skills to navigate the minefield 
of deceptive statistics found in today’s online news landscape. 
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