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Computational activity is increasingly relevant in education and society, and researchers have 
investigated its role in students’ mathematical thinking and activity. More work is needed within 
mathematics education to explore ways in which computational activity might afford development of 
mathematical practices. In this paper, we specifically examine the generalizing activity of 
undergraduate students who solved combinatorial problems in the context of Python programming. 
We demonstrate instances of generalizing in terms of Ellis et al.’s (2017) framework, and we argue 
that some opportunities were facilitated and supported by the computational setting in which the 
students worked.  
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Introduction and Motivation 
Computation is an increasingly essential aspect of science and mathematics, and researchers and 

policy makers within STEM broadly (Blikstein, 2018; NGSS Lead States, 2013; Weintrop, Beheshti, 
Horn, Orton, Jona, Trouille, & Wilensky, 2016), and mathematics education especially (e.g., Benton, 
Saunders, Kalas, Hoyles, & Noss, 2018; Buteau & Muller, 2017; Cetin & Dubinsky, 2018; Hoyles & 
Noss, 2015; Feurzeig, Papert, & Lawler, 2011), are making the case for more attention to be paid to 
computing in the field. Central to current interest in computing are questions related to whether and 
how computing might strengthen students’ mathematical thinking and activity, including their 
engagement in mathematical practices. The question of whether such computing allows for transfer 
of content knowledge or practices is a source of debate, with some researchers making the case for 
and some against arguments that evidence of transfer exists (see Tedre & Denning (2016) for 
discussion). Acknowledging this debate, we investigate such questions with a qualitative exploration 
in which we demonstrate how computing may support students’ engagement with a mathematical 
practice – generalization.  

Our research question is: In what ways did a computational setting support undergraduate students’ 
generalizing activity on combinatorial tasks? We hope that by providing qualitative interview data, 
we can gain some insight into how students engage in generalization in a computational setting. We 
see the paper as serving both a specific and a broader purpose. First, the paper is meant to highlight 
specifically how students engage in the particular practice of generalization with the use of 
programming (within the domain of combinatorics). Our results thus shed light on generalization as a 
practice, and they also illuminate implications for generalization within combinatorics. More 
broadly, this paper exemplifies of how students can make connections to and engage in mathematical 
practices within a computational setting.  

Relevant Literature and Theoretical Perspectives  
Literature and Theoretical Perspectives on Computation 

In this paper we focus on machine-based computing, which we take to be the practice of developing 
and precisely articulating algorithms that may be run on a machine. We make two distinctions in this 
characterization. First, while computing can encompass many kinds of activity, we focus on activity 
that involves developing, articulating, and implementing algorithms. Second, while such algorithm 
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development could occur strictly by hand, we focus on activity that uses a machine. Further, we 
distinguish machine-based computing from engagement with technology more generally, which 
might include using computer algebra systems or dynamic geometry software – for us, machine-
based computing involves not just using software, but engaging in algorithm design and 
implementation in some capacity. In our study, the specific machine-based computing in which our 
students engaged was programming in Python. 

Mathematics education research has a history of using computers to enhance students’ mathematical 
reasoning, beginning with Papert’s (1980) introduction of Logo to help young children. Recently 
there seems to be an increasing amount of attention being paid to computation in education research, 
perhaps due in part to Wing’s (2006, 2008) re-popularization of the term computational thinking. We 
have seen considerable attention paid recently toward examining the role of computing in 
mathematics education (e.g., Benton, et al. 2018; Buteau, Gueudet, Muller, Mgombelo, & Sacristan, 
2019; Buteau & Muller, 2017; Cetin & Dubinsky, 2018; DeJarnette, 2019; Lockwood, DeJarnette, & 
Thomas, 2018; Lockwood & De Chenne, 2019).  

We acknowledge that there is some discussion about whether or not computing can be effective in 
helping students engage in other practices and skills (e.g., Tedre & Denning, 2016). However, in 
spite of such debates, we think it is still worth investigating the degree to which computational 
activity might in fact support students’ thinking and engagement in mathematical practices. Part of 
our reason for this is that we feel there are useful frameworks within mathematics education (such as 
Lobato’s view of actor-oriented transfer) that may bring fresh perspectives toward questions of the 
role of computing in mathematics education. We draw on recent work by Lockwood et al. (2019), 
who interviewed research mathematicians in academia about their use of computing in their work. 
While these mathematicians suggested many benefits of computing, they also “framed computing as 
allowing for some other important habits of mind or practices related to their work” (p. 9). While 
these mathematicians did not name the practice of generalizing specifically, we view our work as 
building on these findings by Lockwood et al. The mathematicians reported in Lockwood et al.’s 
study shared their own beliefs and experiences, and we wanted to explore and demonstrate some of 
their claims with student data, offering insights into how students’ engagement with computation can 
actually give opportunities for students to connect computing to the practice of generalizing. 
Literature and Theoretical Perspectives on Generalization 

Generalization is an essential aspect of mathematical thinking and learning, and there has been 
much work that has established the importance of generalization in mathematics education. Such 
work has included investigations into students’ generalizing within algebraic contexts (e.g., Amit & 
Neria, 2008; Ellis, 2007a, 2007b, Radford, 2008; Rivera & Becker, 2007, 2008), and there has also 
been exploration into generalizing activity among undergraduates in areas like calculus, linear 
algebra, and combinatorics (e.g., Dubinsky, 1991; Jones & Dorko, 2015; Kabael, 2011; Lockwood, 
2011; Lockwood & Reed, 2018). Researchers have also proposed theories about the nature of 
generalization, providing some categories and distinctions of generalizing activity (e.g., Ellis, 2007a; 
Harel & Tall, 1989; Harel, 2008). Together these studies provide rich insight into the nature of 
generalization in many settings. We contribute to this body of work by examining generalizing 
within the context of machine-based computing, and we hope to identify and understand specific 
ways that a computational setting might support students’ generalizing.  

Broadly, Ellis (2007a) followed Kaput (1999) and defined generalization as “engaging in at least 
one of three activities: a) identifying commonality across cases, b) extending one’s reasoning beyond 
the range in which it originated, or c) deriving broader results about new relationships from particular 
cases (p. 444), and we similarly adopt that broad characterization. We also draw upon Ellis, 
Lockwood, Tillema, & Moore’s (2017) Relating-Forming-Extending (R-F-E) framework of 
generalizing activity in characterizing generalization. Ellis et al. (2017) emphasize three different 
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generalizing activities, which build upon a previous taxonomy that Ellis (2007a) had developed. In 
relating, students establish “relationships of similarity across problems or contexts” (p. 680), and so 
students make connections among situations they have encountered. In forming, students engage in 
“searching for and identifying similar elements, patterns, and relationships” within a single task (p. 
680). Here, students may be attending to regularity and articulate some general pattern or relationship 
that they observe. In extending, “students extend established patterns and regularities to new cases” 
(p. 680). This might typically involve some increased abstraction (such as moving from numerical 
cases to arguments involving variables). Ellis et al. also discuss ways in which these generalizing 
activities are interrelated – for instance, relating and forming may help students start to identify some 
regularity, which can then facilitate their extending to more general cases. This categorization offers 
language by which to characterize generalizing activity that we observed in our students. We focus 
on instances of relating and forming in this paper.   
Mathematical Discussion and Motivation for Focusing on Combinatorics 

There are a couple of reasons that we focus on combinatorics in this paper. First, the computational 
setting is particularly well-suited for combinatorial problems, in the sense that some of the features of 
the programs (loop structures, conditional statements) serve to highlight important combinatorial 
concepts. We have articulated this phenomenon elsewhere, including demonstrating students’ uses of 
conditional statements to reason about types of counting problems (Lockwood & De Chenne, 2019) 
and highlighting the computer’s effectiveness in helping students verify solutions to counting 
problems (De Chenne & Lockwood, in press). We believe that combinatorial problems provide rich 
contexts in which students can solve mathematical problems in computational settings. In addition, 
combinatorial tasks are well suited to generalization, and researchers have previously explored 
students’ generalizing activity on combinatorial problems (e.g., Lockwood, 2011; Tillema & Gatza, 
2018). Our work builds on such studies by illuminating ways in which the computational setting 
supports generalizing within combinatorics. We thus aim to contribute both to work on 
generalization and work on combinatorics, building on our knowledge base of students’ generalizing 
activity within the field of combinatorics especially. Finally, on the whole, combinatorial problems 
can be difficult for students to solve (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Lockwood & 
Gibson, 2016), and we see value in investigating ways to improve students’ combinatorial 
experiences. In this case, by focusing on generalization within a computation setting, we gain insight 
into how students might understand and generalize ideas within the particular domain of 
combinatorics.  

Methods 
Data Collection 

We draw on two data sources for this paper, both of which were part of a broader study 
investigating the role of computing in teaching combinatorial ideas. The broader study is ongoing 
and includes multiple paired and small group teaching experiments and one round of classroom 
implementation. We narrowed our focus to these two data sources for the sake of space and because 
they provide illustrative examples of relating and forming. First, we conducted a paired teaching 
experiment (in the sense of Steffe & Thompson, 2000) with two undergraduate students, Charlotte 
and Diana (all names are pseudonyms). They were chemistry majors recruited from a vector calculus 
class, and they participated in selection interviews, which indicated that they had not taken courses in 
discrete math, they were not familiar with combinatorial formulas, and they had no prior 
programming experience. Second, we share results from an individual interview with a computer 
science (CS) student, Allen. He was a CS major recruited from an introductory class in computer 
science. He indicated on a recruitment survey that he had not taken a class in discrete mathematics 
and that he had programming experience. In both cases, the students sat at a computer and worked on 
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combinatorial tasks, writing in a Python coding environment while the interviewer asked clarifying 
questions. Charlotte and Diana participated in 11 total interview sessions during which they solved a 
variety of counting problems. Allen participated in 3 total interview sessions during which he wrote 
programs to list all outcomes of counting problems. In the final interview (from which the data in this 
paper is taken), we asked him only to solve a counting problem, and we then prompted him to 
explain how he would verify his solution. 
Data Analysis 

The data are part of a project in which we explored students’ combinatorial thinking and activity 
within a computational setting, and we were not explicitly targeting generalization in this project. 
However, as we reviewed data it became clear that students were engaging in generalizing activity, 
and we wanted to examine that activity more systematically. For analysis, we surveyed both sets of 
data for instances that illustrated each form of generalization in the R-F-E framework. We 
particularly sought examples that would highlight the role of the computer and ways in which it 
supported students’ generalizing activity. We identified a number of episodes of relating and forming 
in our data sets, and we chose the two episodes discussed in this paper as representative examples. 
Together we discussed additional generalizing in our data, and we articulated ways in which the 
computer in particular facilitated generalizing activity, which we elaborate in the Results and the 
Discussion and Implications sections.  

Results 
We provide two examples of students engaging in generalizing activity, and we focus especially on 

relating and forming within the R-F-E framework. We do not provide data related to extending in 
part due to space, and also because we hypothesize that the computer is particularly useful in 
supporting relating and forming, and students can then extend ideas and relationships by hand. We 
elaborate this point in the Discussion Implications section. 

Relating 
We demonstrate one particular sub-category of relating that Ellis et al. (2017) described: relating 

objects, which involves forming a relationship of similarity between two or more present 
mathematical objects. We demonstrate an instance of relating objects in which Charlotte and Diana 
connected back to work on a prior problem they had done (both sets of students engaged in more 
relating, but we do not have space to offer additional examples). We highlight the tendency of 
students to copy and paste, then edit, code from prior problems (we call this repurposing previous 
code), which we feel is a feature of the computer that particularly supported relating. On the one 
hand, repurposing code could seem just like practical, time-saving technique, but we argue that this is 
actually important for generalization for a couple of reasons. First, the code itself gives students a 
new aspect of the problem to which and from which they can relate. Because the code can be seen as 
encapsulating and representing a counting process, students can identify similarities between the 
representation of code on various problems. Our students drew on similar structures and features of 
code as they copied and pasted work from prior problems. For instance, at one point, Diana asked 
Charlotte, “Do you want me to copy this code from over here [a previous problem], since it’s really 
similar?” This suggests that she perceived similarity between code they had written in the past and a 
current situation. Notably, the computer specifically facilitates that similarity by allowing such 
repurposing easily to occur. With very little effort, students get to duplicate and then adjust 
something they did previously. Such adjustments could be done by hand, but there is something 
about editing and adjusting real time that allows for efficiency. We also hypothesize that because 
copying and pasting reduces students’ work load, it may incentivize their looking for similarity 
between solutions, thus encouraging generalizing activity.   
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As an example of relating, we offer an instance of Charlotte and Diana repurposing code. They had 
previously worked on a problem about enumerating people, How many ways are there to rearrange 5 
people: John, Craig, Brian, Angel, and Dan?, reasoning about code in Figure 1a. This code counts 
arrangements of five people – the nested loops cycle iteratively through each element in the set 
People, and != (not equal) prevents elements from being repeated (more details about such problems 
are in Lockwood & De Chenne, 2019). We later asked: Write some code to list and count the number 
of ways to arrange the letters in the word PHONE. How many outcomes are there? What do you 
think the output will look like? As they started this problem, they had the following exchange. 

  
Figure 1a, 1b: Code for the People and PHONE problems 

 

Charlotte:   Okay. So, I feel like, yeah, basically just gonna be the same as this one because, I mean 
PHONE has five letters and this had five people. So, I feel like we can maybe just copy the same 
code. 

Diana:  Yeah, and then like edit it to be like PHONE. 

The interviewer then asked her why their idea would work, and Diana said the following:  

Diana:   It works because there’s like the same number of things that you’re arranging. So, like you’re 
arranging people here, there’s five of them and then you’re arranging letters here and there’s five 
of them. And it’s still the same as like you’re not repeating any letter, so you keep the not equal to 
expressions. And, yeah. 

Diana’s comments highlight what she perceived as similar about the situation – they were still 
arranging five objects, and they still did not want to be able to repeat any object. So, she noted that 
they still wanted to maintain the same fundamental features of the code, which was the “not equal to 
expressions.” They edited the code from Figure 1a just to have the letters P, H, O, N, and E instead of 
the people (Figure 1b). They ran the code, which correctly printed all 120 arrangements of letters in 
the word PHONE. The fact that they left much of their code the same as the People problem is 
noteworthy, as it suggests that they were attuned to the fact that some features of the code were or 
were not essential to solving the new problem. Notably, they did not change what they perceived as 
features that would not change their process or output (for instance, they did not re-name the set 
People, and they kept and p1 through p5 as their variables). That is, they recognized that the 
underlying structure was the same between the problems, but some other features, like the names of 
the set and variables, did not matter. This gives insight into what they deemed as relevant similarities 
or differences among the two problems.  

To summarize, the computational setting afforded students with opportunities to repurpose code, 
and by doing so they related current situations to prior work. The computational representation of the 
code signified a particular counting process, and the computer’s capacity to allow such code to be 
repurposed facilitated the students’ generalizing activity of making connections among problems. We 
demonstrated one instance of this, but there were multiple examples throughout the teaching 
experiments of such activity. In this way, this example of relating within the computational setting 
lets us see one way in which computational settings could afford some unique opportunities for 
engagement in the practice of generalization.  
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Forming 
Next, we offer an instance of forming. Ellis et al. (2017) distinguish between types of forming, and 

we focus on searching for similarity or regularity (searching to find a stable pattern, regularity, or 
element of similarity across cases, numbers, or figures), and identifying a regularity (identification of 
a regularity or pattern across cases, numbers, or figures). We share Allen’s work on the Books 
problem, which states Suppose you have 8 books and you want to take three of them with you on 
vacation. How many ways are there to do this? Allen originally solved this problem incorrectly by 
finding the number of ways to arrange three of the eight books, 8*7*6 = P(8,3), rather than selecting 
three of the eight books, 8*7*6/6 = C(8,3). (We will refer to this correct answer as C(8,3), even 
though Allen did not yet know a closed form for it, and he could only find the value on the computer 
using his program.) After writing code that listed the outcomes of arranging the books, he noticed 
that outcome 132 appeared in the output after the outcome 123, and he realized that he had not been 
correct, stating “that would not be a good combo because it already appeared up here; it’s just in a 
different order.” He thus saw he needed to correct his solution, and to do so Allen wrote the code in 
Figure 2. When run, this code prints all three number combinations in ascending order, thus ensuring 
that each combination is printed exactly once, and it correctly outputs 56 as the total number of 
combinations.  

 
 Figure 2: Allen’s code for the Books problem 

 
While Allen’s code correctly counted the number of outcomes of the Books problem, he did not 

initially offer any justification for a counting process or mathematical expression. However, he 
remarked that it was interesting that 56 = 8*7, which was his original answer of 8*7*6 divided by 6. 
So, he realized that a ratio of his answer over the correct answer was 6 (that is, P(8,3)/C(8,3) = 6). He 
wondered what would happen if the problem were selecting from only 7 books instead of 8. After 
extending his original (and incorrect) solution to seven books, P(7,3) = 7*6*5, he predicted that the 
ratio of P(7,3)/C(7,3) would be 5. (One potential rationale for this prediction is that he reduced the 
total number of books by 1 (from 8 to 7), and so he reduced his prediction by 1). Allen then decided 
to use the computer and his computational experience to explore these relationships more 
systematically. First, he adjusted the code from Figure 2 to count the number of outcomes for 7 
books (rather than 8), yielding 35, and he computed the ratio of P(7,3)/C(7,3), yielding 6 (which 
contradicted his prediction of 5). Allen then adjusted his code to allow for him to explore more 
examples efficiently. In particular, he created a function that would let him explore multiple numbers 
of books within a range, from which he always selected 3 books. For each number of books, the 
program computed the ratio of his estimated guess (P(n,3) with the actual correct value that he found 
computationally (which is C(n,3)). Allen’s code is displayed in Figure 3, and the output shows 
verified that the ratio P(n,3)/C(n,3) was 6 in each case (again, we write P(n,3)/C(n,3) for clarity, as 
Allen thought about this ratio as his original solution divided by the actual solution). We view 
Allen’s initial exploration and creation of this function activity as an instance of forming, namely 
searching for similarity or regularity, as he was making predictions and looking for and expecting to 
observe patterns. Then, when he ultimately determined that the ratio was 6, we take this as an 
instance of identifying a regularity.  



Investigating undergraduate students’ generalizing activity in a computational setting 

	 2180	

 
 Figure 3: Allen’s identification of regularity via programming a function 

 
Allen then decided to extend his work by changing the number of books being selected in his code; 

that is, rather than selecting three books, he wrote code to select four, five, and then six books. It is 
noteworthy that Allen had not yet provided justification for the constant 6, and so the decision to 
extend his work seems to stem from his desire to observe a pattern (thus we view this as an instance 
of forming). Further, the computer facilitated this forming activity by allowing him to adjust his 
previous code so other numbers of books were selected. For each of these new instances, he divided 
the answer from his original solution method by the actual answer, and he observed a constancy in 
each case. Essentially, Allen fixed an m and used his code to calculate P(n,m)/C(n,m) = m! as n 
ranged for values of from m + 1 to 21, (again, he expressed this ratio as his original solution divided 
by the actual solution). The constant he found in each case represented the number of ways to 
arrange the books after the books have been selected. After finding values in cases three through six, 
he remarked “Okay, I think I found a really high-level relationship that is several layers.” We asked 
him to elaborate, and Allen stated the following. 

Allen:   So, this is the number of books. This is three books, four books, five books, six books. So, if 
that’s the case, then with two books it should be 3. Three would be 6, four would be 24, five 
would be 120, and six would be 720… what I noticed is each time you go up, you multiply by the 
next number. So, 6 times 4 equals 24, which multiplied by 5 equals 120, which multiplied by 6 
equals 720. 

Allen went on to observe that “these are all factorials.” Using this information, he constructed and 
justified a closed form for C(n,m) (we do not include analysis of this data due to space). 

To summarize this episode, Allen used his code to find a constant ratio between his (incorrect) 
original solution and the correct solution he computed. He then identified a pattern between these 
constants as the number of books being selected was increased. We observed searching for similarity 
or regularity when Allen identified the constant 6 in his work on selecting three books. Then, we 
observed identifying a regularity when Allen found a pattern among constants as the number of 
books selected increased. We argue that the computer was fundamental in this process, as Allen 
generated these constants by writing and implementing code. The computer, and the outcomes 
generated, seemed to afford Allen the opportunity to search for patterns and identify relationships. In 
Allen’s case, he used the computer in two important but different ways. First, he used the computer 
to generate answers to problems he could not yet solve by hand (computing the correct number of 
combinations before he knew the closed form of C(m,n)). Second, he wrote a function to generate 
multiple cases, which allowed him to search for regularity in multiple cases efficiently. This episode 
thus sheds light on how the computational setting supported Allen in the specific generalizing 
activity of forming. 
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Discussion and Implications 
In this paper, we have offered instances of students engaging in generalizing activities of relating 

and forming (in terms of Ellis et al.’s (2017) R-F-E framework) within the context of programming 
in Python. We have tried to make the case that in these cases the computer offered specific 
affordances for generalizing activity. These included copying and pasting to support relating, and 
generating correct solutions to multiple problems in order to support forming. While some of these 
activities would technically be possible by hand, the manipulation that the computer allows seemed 
to expediate this practice of generalization for the students. As an additional note, we mostly 
observed the computer being used to support relating and forming, and extending that we observed 
among students tended to be done by hand (students often extended formulas or expressions they had 
written by hand). We thus hypothesize that the computer may be most effective for supporting 
relating and forming, which then contribute to extending. More work is needed to explore whether 
and how extending arises explicitly via computational activity. 

There is more to study specifically about the role of the computer (and specifically machine-based 
computing) in facilitating students’ generalizing activity. We have focused on combinatorics, but 
such computing may elicit generalizing in other ways in other domains. Researchers could explore 
ways that the computer might facilitate other kinds of generalizing activity in other domains or in 
other kinds of problems. Further, we have focused on one perspective of generalization, drawing 
explicitly on Ellis et al.’s (2017) framework, but researchers could consider other possible framings 
of generalization to consider the computer’s role in supporting students’ generalization. In addition, 
our results demonstrate instances in which students engage in the practice of generalization. 
However, there are many other practices, and Lockwood et al. (2019) have suggested that other 
practices like proving or problem solving might closely be related to the kind of machine-based 
computing described in this paper. Thus, future research could be conducted on ways in which 
computing might support other mathematical practices. 
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