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We introduce a methodology for diagramming the ways students use sequences of mental actions to 
solve mathematical tasks. We studied 12 pre-service teachers as they solved a set of fractions tasks, 
ranked by cognitive demand. We present the unit transformation graphs for one of those pre-service 
teachers, to illustrate how she experienced and met cognitive demand across the fractions tasks. 
Specifically, the graphs illustrate how sequencing mental actions places demands on working 
memory and how units coordination structures can offload some of that demand. 
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Prior mathematics education research from a Piagetian perspective has identified students’ 
construction and transformation of units as central to their development of number, extended to 
rational numbers and even algebraic reasoning as generalized arithmetic (Hackenberg, 2013; Steffe 
& Cobb, 2012; Steffe & Olive, 2010). The present study was motivated by a desire to explicitly 
identify mental actions that undergird the construction and transformation of units in the context of 
fractions. For example, students might construct 1/7 as a unit, which has a one-to-seven relationship 
with a whole unit. This relationship might be established by the mental action of partitioning a 
continuous whole into seven equal parts. Conversely, the relationship could be reversed by iterating a 
1/7 part seven times to reproduce the whole. Thus, partitioning and iterating constitute reversible and 
composable mental actions that can be used to construct a 1/7 unit and transform it back into the 
whole unit (Wilkins & Norton, 2011). 

The purpose of this paper is to introduce a methodology for modeling students’ mathematics by 
explicitly identifying the sequences of actions and unit structures they use to solve mathematical 
tasks. Unit transformation graphs (UTGs) account for the constraints of working memory in 
sequencing actions, as well as the power of unit structures in offloading demands on working 
memory. We share the case study of a pre-service teacher (PST) with relatively high working 
memory and the ability to assimilate and operate on two-levels of units. Findings (and the UTGs 
themselves) illustrate how students might use their units coordinating structures to chunk sequences 
of actions into single units, thus reducing the cognitive demands of mathematical tasks. 

Theoretical Framework 
Mathematics educators have begun to explicitly account for students’ actions in building models of 

their mathematical reasoning. Recent examples include activity-effect relations (Tzur & Simon, 
2004) and the Learning Through Activity framework (Simon Placa, Avitzur, & Kara, 2018). Similar 
to those models, UTGs explicitly identify the mental actions students use to construct and transform 
units, but have two distinguishing features. First, they account for the role of working memory in 
sequencing actions. Second, they explicitly account for the role of unit coordinating structures in 
reducing demands on working memory. 
Mental Actions for Constructing and Transforming Units 

Following Piaget (e.g., Beth & Piaget, 1966), we characterize mathematical actions (operations) as 
mental actions that are potentially reversible and composable. We are particularly concerned with 
operations students use to construct and transform units. For example, a student might construct a 
unit by isolating a collection of items, treating them as identical, and taking them as a whole—a 
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mental action called unitizing (Steffe, 1991). Students might also unitize a continuous span of 
attention, whether it be time, length, area, or volume. Once constructed, units can be transformed into 
other units: students might iterate a unit, making copies of it and integrating the copies within a new 
composite unit (a unit composed of units); or they might partition a unit into equal parts, forming 
smaller units. 

Steffe (1992) originally defined a units coordination as a distribution of the units within one 
composite units across the units of another composite unit. For example, in determining the value of 
7 times 4, a student might distribute seven 1s across the four 1s that comprise 4, making a sequence 
of four units of seven units of 1. This definition orients our thinking about how units might be 
transformed into other kinds of units, but we include additional transformations as units 
coordinations. The aforementioned operations of unitizing, partitioning, iterating, and distributing are 
all potentially reversible and composable, and all can be used to transform units into other units. In 
addition, disembedding enables a student to remove a unit, or collection of units, from a composite 
unit, without destroying the composite unit (Steffe, 1992). The student maintains the composite unit 
while considering some of its parts as units separate from that composite unit. 
Sequencing Operations in Working Memory 

Students might need to perform a long sequence of operations to solve a mathematical task. In our 
framework, the cognitive demand of the task would increase with the length of this sequence. This 
perspective aligns with Pascual-Leone’s (1970) characterization of working memory as a mental-
attentional operator (the M operator). “Working memory involves the process of holding information 
in an active state and manipulating it until a goal is reached” (Agostino, Johnson, & Pascual-Leone, 
2010, p. 62). It is a limited resource used to implement mathematical problem solving strategies (Bull 
& Lee, 2014; Swanson & Beebe-Frankenberger, 2004) and one that predicts children’s mathematical 
achievement (Blankenship et al, 2018; De Smedt et al, 2009). 

In the context of mathematical problem solving, Pascual-Leone (1970) characterized this limited 
capacity (M-capacity) as “the number of separate schemes (i.e., separate chunks of information) on 
which the subject can operate simultaneously using his mental structures” (Pascual-Leone, 1970, p. 
302). Commensurate with other measures of working memory, Pascual-Leone (1970) found that 
adults can typically hold in mind 5-7 schemes at once. In numerical contexts, such as solving 
fractions tasks, schemas might refer to the operations students use to construct and transform units. A 
student might hold in mind a sequence of seven such operations, but fractions tasks may involve 
multiple levels of units (e.g., the whole, unit fractions, measures of a unit fraction) with many 
transformations between them. A student might offload some of that demand on working memory 
through the use of figurative material, such as drawings or notations, or by assimilating some of the 
units and unit transformations into existing cognitive structures: units coordinating structures. 
Units Coordinating Structures 

In the absence of structures for assimilating multiple levels of units, each unit or unit transformation 
(e.g., partitioning a whole into n equal parts) would place separate demands on working memory. 
However, those units and the operations that transform them can be organized within units 
coordinating structures (Boyce & Norton, 2016; Hackenberg, 2007; Ulrich, 2016). The rectangle on 
the right side of Figure 1 represents a two-level structure for coordinating units—one that would 
organize the previously-described one-to-seven relationship between a whole unit and the unit 
fraction, 1/7. Note that the structure contains two units and a pair of reversible mental operations 
between them: the whole can be transformed into seven equal parts by via the operation of 
partitioning; and this mental action can be reversed by iterating one of those parts seven times, 
reproducing the whole. This unit coordinating structure acts as a single unit that can be used to 
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assimilate two units and an action (in either direction), thus reducing cognitive demand from three to 
one. 

 

  
Figure 1: Units coordinating structures 

The mathematical power of units coordinating structures is well documented (Boyce & Norton, 
2019; Hackenberg, 2007; Tillema, 2013). For example, Hackenberg and Tillema (2009) 
demonstrated that students who can assimilate three levels of units are able to reason through 
fractions multiplication problems in ways that other students cannot, including students who can 
assimilate two levels of units. This power can be explained, at least in part, by reduced demands on 
working memory. When units are assimilated into existing structures, working memory is freed to 
focus on ever more complex tasks. This structuring and offloading also explains the sense in which 
mathematics builds upon itself. 

Methods 
The data collected and analyzed for this paper is part of a larger project investigating the cognitive 

development of mathematics, behaviorally and neurologically. This paper reports on results from 
video recorded behavioral data. 
Data Collection 

Participants consisted of PSTs at a large university in the mid-Atlantic United States. All 
participants were enrolled in one of two sections of the same mathematics course—Mathematics for 
Elementary School Teachers—taught by the same instructor. PSTs comprise a special population of 
participants for the study because they practice metacognitive skills in the context of solving 
elementary school mathematics tasks. Specifically, they are encouraged to explain their reasoning 
when solving tasks. Twelve PSTs agreed to participate in the interviews.  

Interviews lasted about 75 minutes and occurred in three parts: an assessment of their available 
structures for coordinating units (e.g., two-level structures like the one shown on the right side of 
Figure 1) using interview tasks from prior studies with middle school students (Norton et al, 2015); 
an assessment of working memory using backward digit span with digits read aloud (Morra, 1994); 
and the fractions tasks. Using the units coordination and working memory assessments from the first 
two parts of the interview, a subset of ranked fractions tasks was selected for each PST. Tasks were 
ranked by cognitive demand based on the number of unit constructions and transformations that 
might be required to solve the task, without reliance on units coordinating structures. We intended for 
initial tasks to impose low cognitive demand on PSTs and for later tasks to impose high cognitive 
demand, so generally, PSTs assessed with lower M-capacity began with simpler (lower ranked) 
tasks. Table 1 presents the four tasks on which we focus in this report. 

 
Table 1: Fractions tasks (adapted from Hackenberg & Tillema, 2009) 

Task # Rank Task Description 
5 8 Imagine this [drawing a rectangle] is 5/9 of a whole candy bar. So, how could you 

make 1/9 of the whole candy bar from what you have? 
6 10 Imagine a rectangular cake that is cut into 15 equal pieces. You decide to share your 

piece of cake fairly with one other person. So, how much of the whole cake would that 
person get? 
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Data Analysis 

Data analysis reported here consists of real-time and retrospective analysis of PSTs’ responses to 
the fractions tasks. During the interview, we assessed PSTs’ abilities to solve the tasks without using 
figurative material in order to determine whether to continue to more challenging (higher ranked) 
tasks. The interview continued with higher and higher ranked tasks until we inferred that the PST 
was unable to produce correct or confident solutions. In some cases, PSTs were explicit about their 
own perceived limitations; e.g., “I have no idea” or “my brain is confused now.” 

After all interviews were completed, the team began retrospective analysis of the behavioral video 
data. The videos were analyzed, PST by PST, moving from lowest ranked to highest ranked tasks. 
For each task, the video analysis consisted of two main parts: the first consisted of classifying the 
demand of the task for the students, and the second consisted of creating a UTG for the PST’s actions 
in solving the task. A constant comparative analysis was used throughout both parts of analysis to 
promote consistency. 

Analysis of the videos was done together by the research team with at least two of the three team 
members present. Each task was assigned a classification for the cognitive demand of the task, based 
on behavioral indicators during the PST’s response to the task. Cognitive demand was coded as Low, 
High, or Over, depending on how challenging the task seemed to be for the PST in managing the 
units and unit transformations involved in solving the tasks. The Low code indicates that the PST’s 
response was quick and confident. The High code was used when the PST struggled presumably 
operating near the limits of their M-capacity, as indicated by expressed doubt, rehearsing the task’s 
solution, and requests for the task to be repeated. The Over code indicates that the task was beyond 
the students’ ability to solve without figurative material or help from the interviewer. 

Once cognitive demand codes were assigned for each task, the research team went back and 
watched the video again in order to build a UTG for each task’s solution, illustrating the sequence of 
actions (operations) the PST used to reach a solution. The graphs serve as explanatory models for the 
PSTs’ observed behavior in solving tasks by drawing on cognitive resources. Using the constant 
comparative method, we iteratively returned to prior graphs to ensure the models were consistent 
across tasks and PSTs. Adjustments were made to prior graphs as new features emerged in newer 
graphs. 

Results 
We chose to focus on PST 22 because she was one of two PSTs with the highest assessed M-

capacity (7), and of those two, was the only PST operating at the lower stage of units coordination 
(constructing two-level unit structures but not three-level unit structures). Here, we analyze her 
responses to the four tasks shown in Table 1. 
Task 5 

PST 22 exhibited Low cognitive demand in solving Task 5. As soon as the task was posed, she 
responded, “well if you have five-ninths of it, taking away four ninths would give you one-ninth 
because five minus four is one.” The UTG shown in Figure 2 illustrates the mental actions we 
inferred PST 22 used in solving the task. 

PST 22 seemed to rely on a part-whole understanding of fractions. Rather than structuring 1/9 as a 
one-to-nine size relation between the 1/9 part and the whole, PST 22 seemed to partition the whole 

8 12 Imagine you are at a party and a cake is cut into nine equal pieces. Two people show 
up to the party late and you decide to share your piece of cake with them. So, what 
fraction of the whole cake do the latecomers get together? 

10 14 Imagine cutting off 1/4 of 5/6 of a cake. So, how much is that of the whole cake? 
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into nine parts (P9) and, reversibly, take their unitized collection as the whole (U9). The PST needed 
to disembed five of those parts from the whole (D5) to establish 5/9 as five parts out of nine equal 
parts in the whole. Then, taking away four of those five parts, through a second use of disembedding 
(D1), would leave 1/9 as one out of nine equal parts in the whole. As such, PST 22 would experience 
Task 5 as having an M-demand of 3, well below her M-capacity of 7. 

 

 
Figure 2: Making a unit fractional part from a non-unit fractional part (Task 5) 

Tasks 6 
Tasks 6 involved finding a fractional value (relative to the whole) when taking a unit fraction of a 

unit fraction. With the composition of two fractions, these tasks should impose additional cognitive 
demands, relative to Task 5. These increased demands are indicated in the PSTs’ behavioral 
responses to the tasks, but behavioral indicators did not meet the threshold of High cognitive demand 
and, so, we categorized them as Low. 

PST 22’s response to Task 6 was immediate: “You get one fifteenth of the cake and split that in 
half. My first thought was one-thirtieth of the cake, because [makes splitting motion with hands in 
the air] splitting that in half, like if you were to split every piece of fifteen in half, then that would be 
like one thirtieth of the entire case.” She seemed to imagine partitioning each one of the fifteen 
original parts into two parts to produce 30 parts in the whole. This mental action aligns with the 
distributing operation (T2:15), but the production of 30 equal parts would be essential for PST 22’s 
understanding of 1/30 as one out of 30 equal parts in the whole. We take such responses as indication 
PST 22 used her units coordinating structures to assimilate fractions as parts out of wholes. As 
indicated by the UTG (Figure 3) PST 22 experienced an M-demand of 4 for this task. 

 

 
Figure 3: Finding a unit fraction of a unit fraction (Task 6) 
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Task 8 
With the introduction of a non-unit fraction, Task 8 would also introduce one more unit and one 

more action to coordinate, increasing cognitive demand by 2 over Task 6. Indeed, the UTG for PST 
22’s response to Task 8 (not shown) would be structurally identical to the one for Task 6 (Figure 3), 
except it would include an additional action of disembedding two units from 27 (D2) and the 
resulting unit of 2/27. Increased demand became evident in PST 22’s response, which we took as 
indication of High demand. 

 
PST 22:  So, it’s split up into nine equal pieces. So, then, you would split one ninth into…Two 

people come, but you still have a little bit? So, that… So, you would split that up into three. So, 
then I… Well, I guess you would do one ninth times two thirds to get how much they equal, like 
how much both their pieces would be. And then whatever that is, I guess it would be… two 
over… two eighteenths? Wait, that doesn’t seem right. [pauses for five seconds] I feel like… I 
mean, I guess… You take those nine pieces, splitting that one ninth into thirds. But to find out 
how much two of those thirds are, you’d multiply one ninth by two thirds… Or no. You’d… 
you’d multiply the one ninth by one third, and then just do that twice? I don’t know if that’d give 
you the same answer. 

Researcher:  Okay. Uh, let’s… Maybe I can help you. 
PST 22:  Okay. 
Researcher:  If you want me to be your calculator again, I’ll do it. 
PST 22:  [begins to draw on table with finger] So, you do one ninth, which divided by three, so you 

could times it by one third. So, then you’d have one over um… [pauses for five seconds.] Oh 
wait… [whispers to self] Three times nine, that’s twenty-seven. Oh no, one over twenty-seven. 
And then you multiply that by two… to get two-thirds or to get two parts of the thing… So, then I 
guess… What’s one over twenty-seven times two? Is that just two-twenty-sevenths? Okay. 

Researcher:  Nice, I like the way you reasoned through it. Yeah. 
PST 22:  Okay. I was like, because I was thinking one over twenty-seven times two over one and I 

was like I guess that’s just two, twenty-sevenths. 

This response indicates that PST 22 tried to rely on the standard algorithm for multiplying fractions 
but struggled to reconcile it with prior reasoning. She began as she had in Task 6, partitioning the 
whole, disembedding one of those parts, and then partitioning it into smaller parts. However, in 
contrast to Task 6, she then began referring to a fraction multiplication, 1/9 times 2/3. Fraction 
multiplication might have helped her keep track of the additional unit involved in this task (the 2 in 
2/3), but she was not sure that the multiplication of fractions would generate the correct result. Her 
concerns were heightened when she mistakenly multiplied 9 times 2, instead of 9 times 3, to produce 
two eighteenths: “that doesn’t seem right.” So, she reverted to operating on the 9 units, partitioning 
them into thirds, which she was then able to reconcile with 1/9 times 1/3. Thinking of the task as the 
multiplication problem, 1/9 times 2/3, then did work for her by maintaining the 2 in two-thirds: “and 
then you multiply that by 2 to get two-thirds, or to get two parts of the thing.” 

We found PST 22’s persistence in response to Task 8 impressive and indicative of her high M-
capacity. Ultimately, she reasoned with parts out of the whole (“two parts of that thing”), as she had 
before, but was able to meet the cognitive demands of the task by organizing her operations around 
the fraction multiplication algorithm. So, while the task was highly demanding for her, we see 
evidence for how algorithms, when made meaningfully related to (or reconciled with) operations, can 
offload the demands of mathematical reasoning. 
Task 10 

For Task 8, the PSTs needed to distribute the new partitioning (thirds) across the nine units making 
up the whole, and then take two of the resulting parts (1/27ths). For Task 10, she needed to distribute 
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fourths across both the five parts in five-sixths and the six parts in the whole. The increased demands 
caused PST 22 to lose track of the six parts making up the whole. Figure 5 presents the UTG for this 
response. 

PST 22:   You’re cutting off one fourth of five sixths of a cake? 
Researcher:  Yes. 
PST 22:  [uses hands to show number of pieces on the desk and begins talking to self] So, you’d 

have, so you’d have six pieces…and out of those five…you want to cut off one fourth of that. 
Um…I guess you would…I mean I guess you could split those five pieces into four and get one 
of those, but I’m trying to think like numbers-wise what that would...I. well… [pauses for seven 
seconds] I guess of those five pieces you could…Split them into…Like you could get a…Split 
them into twenty pieces because five times four is twenty and then, um, you would take one 
fourth of that… I guess it would be five pieces. Yeah, it would be five pieces of that twenty to 
find the one fourth of the five sixth. Is that, do I need to explain it more? 

Researcher:  Okay, uh let’s… 
PST 22:   Which would be, do you want me to draw it? [reaches towards paper] 
Researcher:  Well tell me the final answer and then we can draw it. 
PST 22:  Um, oh gosh it would be… [pauses for four seconds] Splitting twenty, it would be 

five…Well it would be five twentieths, which would equal one fourth, so like five of those, but 
then I don’t know how to figure that out into sixths. I think that’s my… 

Researcher:  Yeah that’s cool, I like the way you’re reasoning. Let’s draw it, and I think you will 
figure it out. 

 

 
Figure 4: Finding a unit fraction of a non-unit fraction (Task 10) 

Once again, PST 22 seemed to conceptualize the initial fraction (5/6) as a part-whole relation, 
partitioning the whole into six equal parts and disembedding five of them. This inference is 
supported by the PST’s verbalization, “so you’d have six pieces…and out of those five.” As PST 22 
tried to find one-fourth of 5/6, she operated only on the five disembedded parts and lost track of the 
sixth part making up the whole. Thus, rather than fourthing 5/6, as originally intended, she ended up 
distributing four parts into each of the five parts, producing 20 parts, and taking one-fourth of those 
20 parts instead. 

Discussion 
In line with the stated goals of PME-NA, we aimed to elucidate the psychological aspects of 

learning mathematics. Specifically, UTGs integrate the psychological construct of working memory 
with a construct from mathematics education research—units coordination—to explain how 
mathematics arises through the coordination of students’ own mental actions (Beth & Piaget, 1966). 
The case study of PST 22’s solutions to a ranked set of fractions tasks demonstrate the explanatory 
power of UTGs. 
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With an assessed working memory of 7, PST 22 would have experienced even Task 5 as highly 
demanding; her solution to the task involved four units and three transformations between them. 
However, PST 22 assimilated some of those units and transformations into two-level structures, thus 
chunking them into single two-level units so that she experienced Low cognitive demand. As a 
theoretical construct, chunking has its roots in cognitive psychology (e.g., Pascual-Leone, 1970), but 
UTGs illustrate how chunking can take a particular form in mathematics, as units coordinating 
structures (Steffe, 1992; Hackenberg, 2007). 

Offloading cognitive demand with unit structures afforded PST 22 the ability to account for 
additional units and transformations in progressively more demanding tasks. In looking at the UTGs 
across the four tasks (as illustrated in Figures 2-4), we see how PST 22 introduced additional 
transformations (such as distributing) and units to solve Tasks 6 and 8, until she reached her 
threshold, with 7 units/transformations. Having reached that threshold, she was not able to proceed in 
solving Task 10, but we might imagine ways that she might further structure units into chunks to 
increase her mathematical power. 
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