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In this paper, we address the following questions: What misconceptions do high school students 
exhibit in their first encounter with significance test problems through a repeated sampling 
approach? Which theory or framework could explain the presence and features of such patterns? 
With brief prior instruction on the use of Fathom software to generate empirical sampling 
distributions, 18 pairs of high school students participated in a series of lessons involving four 
significance test problems addressed by a repeated sampling approach. Based on the analysis of 
students’ responses to the first problem, we identified four misconceptions about significance testing. 
A framework to explain the misconceptions is conjectured. 

Keywords: Misconceptions, significance testing, empirical sampling distribution (ESD), 
verificationism, skepticism. 

Sampling and inference are fundamental statistical ideas (Burril & Biehler, 2011). Statistical 
inference involves using a sample to make a claim about the population from which it has been 
drawn, quantifying the uncertainty in the process, then making decisions based on the information it 
provides. It arises from the necessity to evaluate experimental outcomes in any scientific domain. To 
fulfill this purpose, statistical inference relies on mathematical knowledge and thinking. This implies 
that the notions of sampling and inference are important components of statistical literacy and should 
be considered as candidates for compulsory topics in mathematics education curricula (Watson, 
2006). However, the topic of statistical inference is usually not introduced until the university level, 
where it is compressed in an introductory course on statistics and probability. This is a concern, since 
teaching the wide scope of concepts that constitute statistical inference in just one semester often 
leads to poor understanding by students, who may only retain a set of terms and procedures.  

A potential solution to this problem is to introduce the notion of statistical inference at different 
levels of education, with the degree of formality adapted to each level. Recent calls from the statistics 
education community to promote and advance the understanding of statistical inference (Pratt & 
Ainley, 2008) have spurred interest in exploring ways to introduce concepts related to statistical 
inference at the primary and high school levels. This research trend is consistent with the idea that 
Heitele, invoking Bruner, formulated 45 years ago: “…that any subject can be taught effectively in 
some intellectually honest form to any child at any stage of development” and that fundamental ideas 
“differ on the various cognitive levels, not in a structural way, but only by their linguistic form and 
their levels of elaboration” (1975, p. 187). Additionally, the rapid development of technological tools 
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in education have allowed for new ways of representing both mathematical and statistical ideas that 
make these ideas more accessible at pre-university levels (Biehler, Ben-Zvi, Baker, Makar, 2013).  

The notion of significance testing is a critical element in the understanding of statistical inference, 
and is an application of an important principle of scientific thinking: “one does not have evidence for 
a claim if nothing has been done to rule out ways the claim may be false” (Mayo, 2018, p. 5). 
However, the idea of validating the outcomes of scientific research by searching for ways to 
demonstrate the falseness of the claims is contrary to intuition: According to Fischbein (1987), 
people’s natural inclination is to look for confirmatory evidence. Given the importance of and 
difficulties in understanding the concept of significance testing, therefore, we contend that this 
concept should be introduced at the high school level, when students are capable of reasoning in a 
formal way. By developing an understanding of some pertinent components of significance testing 
earlier in their mathematical education, we propose that students would be in a better position to 
tackle problems involving statistical inference at the university and professional levels. Accordingly, 
we formulated the following hypotheses: 1) It is possible to design and implement a series of lessons 
for high school students that involve reasoning with and about significance testing. 2) The use of 
technological resources is key to the implementation of the former. 3) The understanding gained 
about students’ reasoning in response to such problems may point to a better teaching approach for 
significance testing. Using these hypotheses, we formulated our research question: 

What misconceptions do high school students exhibit in their first encounter with significance test 
problems through a repeated sampling approach using computational simulation? What intuitions 
may explain these misconceptions? 

We are motivated to investigate students’ reasoning about significance testing by the fact that on the 
one hand, significance tests are extensively used in a wide range of scientific research domains to 
evaluate the results of experimental outcomes (Haig 2016; Winch & Campbell, 1970), while on the 
other hand, many students and researchers have a tendency to misunderstand the objective of 
significance tests and to misuse the associated concepts and results (Cohen, 1994; Goodman, 2008; 
Morrison & Henkel, 1997). This tension has given rise to two contrasting reactions to the use of 
significance tests in experimental research: a) The development and refinement of concepts 
embedded in the test, as well as the ways they are used in experimental procedures (Mayo, 2018); b) 
a strong opposition to the use of significance tests and calling for their retirement from experimental 
research practices (Amrhein, Greenland, & McShane, 2019). This situation points to the need for a 
better understanding of the ways in which students reason about significance testing.  

Background 
One of the considerable challenges in the teaching of statistics at the college level is enabling 

students to rationally interpret the system of ideas that constitute significance testing (Castro-Sotos et 
al., 2009; Vallecillos, 1996). Batanero (2000) identified three main concepts involved in significance 
testing that students often misunderstand: 1) the nature of the test, 2) the nature of the p-value, and 3) 
the significance level. In their own study, Castro-Sotos et al. (2009) described two frequent 
misconceptions about significance testing: 1) it is viewed as a mathematical proof that establishes the 
truth of one of the two hypotheses, and 2) it is viewed as a probabilistic proof by contradiction: that 
is, if the null hypothesis is rejected, the p-value is the probability of making the wrong decision. 
Castro-Sotos et al. (2009) also detailed several misconceptions about the concepts of the p-value and 
significance level, including: a) the p-value is the inverse of the normative definition (the p-value 
represents the probability of the hypothesis being true, given the outcome of the sample); b) the p-
value is the probability of a simple event (the p-value represents the probability of obtaining the 
observed outcome); and c) the p-value is the probability of the null or alternative hypothesis being 
true. 
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Lane-Getaz (2017) explored how early education may decrease the incorrect use (and possible 
abuse) of significance testing. The researcher examined learning outcomes related to statistical 
inference for social science students in an introductory course on statistics that incorporated 
randomization and simulation tasks. The study demonstrated progress made by the students during 
the course and highlighted several difficulties and misconceptions that could be tackled through 
instruction. 

Other than the previous study, however, the following have not received much attention in the 
research on students’ understandings and misunderstandings about significance testing: 1) students’ 
reasoning about significance testing in the context of a classroom intervention, and 2) the use of 
digital resources to generate empirical sampling distributions (ESDs) as a support for learning about 
significance testing. Both are addressed in our current experiment. 

Conceptual framework 
Reasoning is any process whose objective is to determine the validity or plausibility of a proposition 

or result by means of certain premises (data or propositions). Mathematical reasoning, in a broad 
sense, can be elaborated at different levels of formality, given that premises can range from intuitions 
to firmly instituted axioms, and derivation processes can range from persuasive argumentations 
(examples, induction, analogies) to well-established mathematical and logical procedures. 

Reasoning is accompanied by sense-making, which involves linking a new proposition or 
unexpected result to previous knowledge or beliefs held by the learner (Shaughnessy et al., 2009). 
Sense-making is supported by intuition which, according to Fischbein, “…expresses the fundamental 
need of human beings to avoid uncertainty” (1987, p. 28). Doubtful information and uncertain 
propositions prevent actions and reasoning. Intuitions are necessary to act and reason because they 
are considered to be true by the subject. While intuitions derived from perceptions of reality are 
generally correct, “mental representations, hypothetical ideas and solutions may be biased, distorted, 
incomplete, vague or totally wrong. To believe, however, at least temporarily, in such mental 
productions, a certain excess of confidence is required” (p. 28). In summary, in the reasoning 
process, people need to start from certainties, which is why they tend to trust their intuitions (beliefs 
or conceptions) more than what would be justified under objective evaluation. According to 
Fischbein, the excess of confidence in intuitions is a mechanism that allows reasoning to be carried 
out, but at the expense of the risk of spurious conclusions. Fischbein goes on to explain that people’s 
cognitive mechanism for acting and reasoning in certain environments consists of producing a 
coherent structure (Gestalt) while preserving “facts and segments which fit together and to discard 
those which may disturb the unity” (p. 35). In particular, drawing from the psychology literature, 
Fischbein explains that people manifest a bias to confirmation and are reluctant to seek non-
confirmatory evidence; when it does appear, they tend to ignore it. They also tend to not consider 
other plausible scenarios nor that the very same evidence can also account for alternative hypothesis. 
We can add that hypothetical deductive reasoning is a formal expression of the need to start from 
(assumed) certainties in a scientific and controlled manner. However, such reasoning requires 
maturity and practice, given that it does not usually appear in a spontaneous way in specific 
situations, even when subjects have reached the formal operational stage of development proposed 
by Piaget (Schmid-Kitsikis, 1983). 

The logic of significance testing requires overcoming the cognitive tendencies described by 
Fischbein. Indeed, a null hypothesis is a hypothesis that one tries to reject, rather than confirm, as is 
often believed: for Fisher (…), the null hypothesis is “the hypothesis that the phenomenon to be 
demonstrated is in fact absent.” An experimental outcome is deemed significant when the null 
hypothesis is rejected, and not significant when the null hypothesis is not rejected. A statistic is a 
function that assigns a number to each sample of a given size. In the simplest case (the one used in 
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this study), this may be the proportion of an attribute in the sample. Significance testing is made 
possible by the ability to model the sampling distribution of the statistic under the assumption that 
the null hypothesis is true. It should be noted that in order to understand the role of the sampling 
distribution, one must apply hypothetical deductive reasoning. Once a sample has been drawn from 
the population and a statistic is calculated, a probability of the given event occurring or a more 
extreme value is computed, under the assumption that the null hypothesis is true. This probability is 
known as p-value. If the p-value is low (generally <5%), the null hypothesis is rejected, and the result 
is deemed significant. 

A repeated sampling technique using software and random simulations allows students to construct 
an approximation to the sampling distribution of the statistic, which is usually referred to as an 
empirical sampling distribution (ESD). To simplify presentation, we define the following 
terminology as related to ESDs: assume that N samples of size k are simulated with H0:P=θ, where θ 
is the probability of success. In this instance, success means selecting an element from the population 
that presents the feature R, and θ represents the proportion of elements of the population with the 
feature R. We define the statistic X as the “number of success cases in the sample” and use the 
notation ESD(N,k,P=θ) to denote an ESD of that statistic. 

Method 
Participants and data. The following results arise from data corresponding to responses provided 

by a group of 36 high school students to the first of four activities in a series of lessons on 
significance testing. Students were arranged in 18 pairs throughout the intervention, each with access 
to a computer equipped with Fathom. At the time of the intervention, the students were enrolled in 
their second year of high school (16-17 years old) and had not previously taken a course on statistics 
or probability. Activities were selected from statistics textbooks and then modified to align with the 
participants’ school level and the repeated sampling approach. While solving the problems, each pair 
wrote a report that detailed their analysis and solution to the task; these reports constitute our main 
data source. 

Instruments. The first problem of the series of lessons appears below; Table 1 summarizes the 
statistical data and the solution to the task. 

Coca-Cola’s advertising campaign claims that the majority of people (more than 50%) prefer 
Coca-Cola to Pepsi. To corroborate this, an experiment was conducted, where 60 randomly-
selected participants tasted both beverages in a blind test. Thirty-five of the participants 
preferred the Coca-Cola. Based on these results, would you accept the hypothesis that more 
than 50% of people prefer Coca-Cola to Pepsi? 

Table 1. Data and solution to the first problem 
Null Hypothesis (𝑯𝟎) N Rejection freq. p–value Conclusion 

𝑷 = 𝟎. 𝟓𝟎 60 𝑿 ≥ 𝟑𝟕 𝒑 = 𝟎. 𝟏𝟐𝟔 𝑯𝟎 is not rejected 
The intervention began with an introductory session aimed to enable students to use Fathom to 

generate ESDs. This was followed by a series of four lessons, each of which featured a problem 
involving significance testing. From the second lesson on, the lessons unfolded as follows: First, the 
instructor facilitated a discussion about students’ solutions to the previous problem, inviting students 
to explain the motives and rationales behind their procedures; second, students were tasked with a 
new problem that gave them the opportunity to apply newly-gained skills and understandings about 
significance testing. Students worked on the problems in self-selected pairs and described their 
solutions on a worksheet. During this time, the instructor’s role mainly involved posing questions to 
stimulate inquiry and helping students overcome technical difficulties (not to provide normatively 
correct answers). 
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We rely on principles of the grounded theory methodology (Birks & Mills, 2011; Glaser & Strauss, 
1967/2008) for coding students’ answers to the problems. This is a general research methodology in 
the social sciences (Holton, 2008) that involves constructing theories or frameworks through the 
gathering and analysis of data (as opposed to analyzing the data using an existing theoretical 
framework). As previously stated, the data analyzed in this study were students’ responses to 
significance test problems. These responses were digitally transcribed, then analyzed in order to 
generate a set of codes and categories. Several misconceptions were identified using this procedure. 

Results 
Students’ responses were analyzed and coded in three general categories: reasoning, hypothesis, and 

conclusion. In this report, we will only examine the four misconceptions identified in the first 
category (reasoning) exhibited in responses to the first problem. A more thorough analysis of the data 
can be found in García (2017); however, we consider the following evidence sufficient in 
exemplifying the identified misconceptions. 

It should be noted that the descriptions of the emergent patterns use the authors’ language and not 
necessarily the terminology students actually used when describing these ideas. Each identified 
misconception is a result of the constant comparative method, which allows for abstraction of the 
subtle differences in students’ answers. 

Misconception 1: Majority in the ESD. Students generate an ESD (500, 60, P=0.50, or similar) and 
identify the number of samples in which the statistic X takes a value greater than 30. If this number is 
greater than 250 (N/2), the null hypothesis is rejected, and if it is lower than 250 (N/2), then it is not. 
It should be noted that this procedure ignores information given by the sample and the significance 
level. This misconception is consistent with the belief that the ESD represents the population, or an 
approximation of the population. This misconception was the most frequent in the data, identified in 
13 out of 18 responses, and can be exemplified by R6’s answer: 

…we considered surveys in which we had at least 31 favorable cases for Coca-Cola, which 
was a total of 233 surveys… while surveys with 30 favorable cases, that is, 50% or less, 
represented 267 surveys… a quantity greater than 50%. 

The pair concluded that it is not true that there is a greater preference to Coca-Cola over Pepsi and 
included Figure 1a in their response. 

 

 

 
Figure 1: a) Majority in the ESD (pair R6); b) Mode (pair R13) 

Misconception 2: Mode. Students generate an ESD (500, 60, P=0.50) and identify its mode. If this 
value is greater than 30, the null hypothesis is rejected, and if it is equal to or lower than 30, it is not. 
As in the previous case, this reasoning ignores both the observed outcome and the significance level, 
and is also compatible with the belief that the ESD provides some information about the probability 
of the null hypothesis being true: In other words, it is assumed that p = frequency(H), where H is an 
independent variable. This misconception emerged in three responses. An example is provided by 
R13: 
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…our most frequent value in the surveys was 28 people (out of 60) that liked Coca-Cola 
more, so we can see there are less than 50% that liked Coca-Cola the most. 

The pair concluded that Coca-Cola’s advertised claim is false and supported their argument with 
Figure 1b). 

Misconception 3: Majority in the sample. This is the only misconception in which students 
completely ignore the ESD and rely exclusively on the observed outcome (35/60 that preferred Coca-
Cola). According to this line of reasoning, if the proportion of favorable to unfavorable outcomes is 
greater than 0.5, the null hypothesis is rejected, otherwise it is not. R2’s response exhibits this 
misconception: 

…we can say that a majority is 51% or more, and the experiment’s result showed that 35 out 
of 60 people preferred Coca-Cola, which is 59% of the total [(59% x 60) = 35.4]. Thus, we 
can conclude that they are not wrong in their conclusion. 

The pair concluded that Coca-Cola’s advertised claim is true, but unlike other students who 
participated in previous explorations of the task (Garcia & Sanchez, 2014), these students were 
unable to apply the ESD results generated with the software to support their argument. 

Misconception 4. Extreme hypothesis. In this case, 𝑃 > 0.5  is taken to be the alternative 
hypothesis. Students arbitrarily establish a margin of error, M (e.g., 5% or 10%). Then, they pick a 
value for P such that 0.5 –  𝑀 < 𝑃 < 0.5 and generate an ESD (500, 60, 𝑃 ≠ 0.50) to observe the 
values within the range of this distribution. If the value of the statistic at hand is in this range (which 
is the case for this problem), then the hypothesis 𝑃 > 0.5 gets rejected. R10’s response demonstrates 
this line of reasoning: 

…in general, we must take a greater number of surveys of the population so we can conclude 
that indeed more than 50% like or prefer Coca-Cola, because in these surveys there must be 
a range of around 10 values more and 10 values less around the expected value […] in the 
simulated survey, despite the percentage being lower than 50% (because P = 44%) and is 
expected to have a value of 26, we obtain results that go from 16 (the lowest value of X with 
a non-zero frequency) to 38 (the highest value of X with a non-zero frequency), from which 
we can see a greater value (for X) than in the original problem, which is why the 35 do not 
assure that most people like Coca-Cola. 

As previously stated, these responses were provided to the first of the four problems in the series of 
lessons. It should be noted that the process of addressing students’ ideas and solutions may have 
allowed them to gradually incorporate some previously absent but significant elements involved in 
significance testing, such as using all of the appropriate facts in the problem and determining if the 
observed outcome could be labeled as an outlier or not. Nevertheless, students were ultimately 
unable to provide solutions to this problem that were consistent with the logic of significance testing. 

Conclusions and discussion 
We propose an explanation based on Fischbein’s (1987) theory about intuition for the first three 

observed misconceptions. According to Fischbein, intuition is related to people’s tendency to avoid 
uncertainty and to look for confirmatory evidence. This idea, coupled with the traditional focus on 
proof in mathematics teaching, led us to propose a category in the context of our experiment called 
naïve verificationism, which consists of the belief that the objective of a significance test is to 
demonstrate the veracity of the null hypothesis. Critical verificationism, on the other hand, consists 
of the belief that the objective of the test is to compute the probability of the null hypothesis being 
true (or false). However, as students continue to participate in discussions about the problems and 
analyze solution strategies, they develop a kind of skepticism, which involves recognizing that it isn’t 
possible to conclusively verify any hypothesis based on the evidence provided by a sample. 
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According to Fischbein (1987), people try to produce coherent structural schemata in which they 
can integrate their intuitions (certainties), beliefs (theories), and observations (evidence). Such 
structural schemata underpin the reasoning process—justifying the solution of a problem or 
explaining a phenomenon. In this sense, the misconception of mistaking an ESD with the population 
(or its approximation; Garfield & Ben-Zvi, 2008) is compatible with naïve verificationism, given that 
if the sampling distribution represents the population, then analyzing the ESD alone would be enough 
to verify the validity of the hypothesis. We interpret Misconception 1 (Majority in the ESD) as a 
manifestation of students’ efforts to align the ESD, a new concept for our participants, to their 
expectations of verifying the null hypothesis. In a similar way, another way to create a structural 
schema is to believe that the ESD is a distribution in which each value for the statistic is taken as a 
possible hypothesis, with the frequency of each hypothesis (statistic) allowing for the computation of 
the probability of the truth (or falsehood) for each one; such reasoning demonstrates critical 
verificationism. The mode of such a conceived distribution would be the most likely hypothesis 
(statistic), and this is consistent with Misconception 2 (Comparing the mode of the ESD with the null 
hypothesis).  

In Misconceptions 1 and 2, students do not assign a specific role to the information provided by the 
sample, given that their conception of the ESD makes this task an unnecessary one. These results 
show that the intended purpose and meaning of an ESD is not clear to students, despite their 
participation in activities in which they produced and interacted with different ESD’s using physical 
and computational simulations. 

In Misconception 3 (Majority in the sample), students do not ignore sample results as in previous 
cases, but create a simpler structural schema: they assume that because the information provided by 
the sample is the only information available when making a decision, it alone contains the key to the 
solution of the problem. Therefore, it is assumed that the proportion of favorable to unfavorable 
outcomes in the sample closely mirrors the corresponding proportion of the population. In this 
misconception, the information provided by the ESD is completely ignored, and therefore 
demonstrates naive verificationism. Shaughnessy (1992, p. 478) referred to two false conceptions 
that are related to this misconception: “people inadequately believe that there’s no variability in the 
real world” and that “people often have an unjustified overconfidence in small samples.” Nickerson 
(2000, p. 254) and, in a similar way, Castro-Sotos et al. (2009) report that one of the most common 
beliefs about significance tests among researchers and students is that “by rejecting the null 
hypothesis, a theory that predicts the falseness of the null hypothesis is established.” Such a claim is 
compatible with naïve verificationism, because it responds to a desire of establishing the falseness of 
an hypothesis. This particular misconception emerged only in the first problem and was abandoned 
as students gained experience in generating and analyzing ESDs. 

Furthermore, in Misconception 4 (Extreme hypotheses), students incorporate the idea of a margin of 
error by defining an interval on one side of the null hypothesis, with the opposite side representing 
the alternative hypothesis. An extreme hypothesis is selected in this interval. If the distribution 
generated by the extreme hypothesis captures the value of the statistic, there is no reason to reject the 
null hypothesis. That is, if the value of the statistic (in this case, 35) can plausibly occur in a more 
extreme ESD (P < 0.5), then the event is also plausibly occurring for the null hypothesis (P = 0.5) as 
well, and the null hypothesis should therefore not be rejected. In using such reasoning, students 
exhibit intuitions that are partially aligned with the logic of significance testing: for example, the idea 
of “taking more extreme values” is used when defining a p-value, and considering “what would 
happen if the hypothesis was…” demonstrates hypothetical-deductive reasoning that is used in the 
establishment of the hypothesis. However, such intuitions are not appropriately applied. An 
important feature of this line of reasoning is that it relies on an arbitrary, but well-intended criterion: 
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the null hypothesis is rejected when the statistic is not contained in a certain range of the simulated 
ESD. 

In summary, the misconceptions that students exhibited in their solutions to the first problem 
correspond to the intuitive idea that the objective of a significance test is to verify the null 
hypothesis, or to estimate the probability that it is true. It is likely that a tendency to verificationism 
also explains some of the misunderstandings and misuses of ESDs evidenced even by experimented 
learners. This is why it is critical in the teaching of statistics to enable students to develop alternative 
reasoning schemes—that is, schemes based in reasonable skepticism. 
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