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This lecture reports on aspects of a larger research programme focused on studying mental 
mathematics in elementary and secondary mathematics classrooms. It specifically addresses an 
unplanned aspect that became salient through the work conducted in these classrooms. In this 
research programme, mental mathematics sessions are designed on a variety of mathematical topics 
(e.g., algebra, geometry, measurement, statistics, trigonometry, fractions), where students are given 
short amounts of time to solve tasks given orally and/or on the board, without the use of paper-and-
pencil or any material aids. Whereas the central objectives centers on inquiring into the nature of the 
strategies students engage in to solve the tasks, more seem to be happening in these sessions. In 
particular, students’ solutions and strategies to the task given in the mental mathematics context led 
to numerous questions, discussions, follow-up explorations, and so forth, by students, which in turn 
enabled the emergence of significant mathematical issues. This raised interest in investigating these 
(additional and unplanned) mathematical issues. This represents the core of this lecture, which 
focuses on the nature of the mathematics (in terms of content and of practices) that frequently 
unfolds in the mental mathematics sessions conducted. Using an illustrative extract from a mental 
mathematics session on analytical geometry in a Grade-10 classroom (15-16 years old), the analysis 
outlines how not only mathematical content is being worked on through these mental mathematics 
sessions, but also how mathematical practices are being enacted by students. This raises issues about 
the nature of the environment that these mental mathematics session plunge students into, one that 
could be tentatively, and boldly, aligned with Papert’s concept of mathland. 

Keywords: Mental Mathematics, Didactique des Mathématiques, Mathematical Practices, Problem 
Solving, Curriculum Enactment, Geometry and Geometrical and Spatial Thinking 

Being a mathematician is no more definable as knowing a set of mathematical facts than 
being a poet is definable as knowing a set of linguistic facts. Some modern mathematical 
education reformers will give this statement a too easy assent with the comment: ‘Yes, they 
must understand, not merely know’. But this misses the capital point that being a 
mathematician, again like a poet, or a composer, or an engineer, means doing rather than 
knowing or understanding. (Papert, 1972, p. 249) 

Preliminary note: the nature of my research work in didactique des mathématiques 
My research work is in didactique des mathématiques. What does this mean and how does it impact 

on the nature of the work I conduct? As Douady (1984) expresses, research work in didactique des 
mathématiques investigates the processes and conditions for the production, transformation, 
communication and acquisition of mathematics, which is not to be reduced to the quest of finding 
effective teaching methods for mathematical notions. In other words, research work in didactique des 
mathématiques focuses on studying how mathematics happens and advances; which includes its 
teaching. Brousseau (1991) adds an important aspect to this, mainly that it is a “Science concerned 
with the production and communication of mathematical knowledge in how these productions and 
communications are specific to mathematics” (my translation). What comes out of this is that 
mathematics and its specificities are central to research work conducted in didactique des 
mathématiques. Hence, questions about mathematics education are addressed through mathematics, 
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that is, where the didacticien des mathématiques is concerned with mathematical experiences and 
activities in how they are representative, specific and aligned with mathematics themselves. As an 
example, the interest in problem solving for a didacticien des mathématiques is not because doing 
problem-solving helps learn this or that mathematical concept or because it could contribute to better 
students’ success in mathematics, but mainly because mathematics is defined as a problem-solving 
endeavor (e.g., Brown & Walter, 2005; Halmos, 1981; Papert, 1972, 1996; Polya, 1957). This is why 
didacticiens des mathématiques undertake studies on problem-solving or argue for its significance: 
because problem-solving is constitutive of mathematics as a discipline.  

Research work in mental mathematics 
My research programme is focused on studying mental mathematics in elementary and secondary 

mathematics classrooms. In this research work, sessions are designed and conducted on a variety of 
mathematical topics (e.g., algebra, geometry, statistics, measurement, trigonometry, fractions), where 
classroom students are given short amounts of time to solve tasks given orally and/or on the board, 
without the use of paper-and-pencil.  

Mental mathematics can be defined along the existing research literature, e.g., following 
Hazekamp’s (1986) view, as the solving of mathematical tasks through mental processes without 
paper-and-pencil or other material aids available. To this one can add that there are frequently time 
constraints to producing an answer, as well as the fact that questions are often asked orally. The 
mental mathematics sessions conducted usually follow the same structure, similar to what Douady 
(1994) suggests by carefully establishing a respectful climate that ensures thay students’ share and 
listen to solutions:  

(1) A task is offered orally or on the board; 
(2) Students listen and solve the task mentally;  
(3) When time is up, students are asked to explain their answer (adequate or not) in detail to the 
classroom, taken in note on the board (and in some cases students themselves come to the board 
to explain it); 
(4) Other students who solved differently (or thought of solving differently) are invited to offer 
their answers; once all is said and done, another task is given. 

It is often reported that the strategies used to solve mental mathematics tasks differ from those 
usually referred to in a paper-and-pencil context. Butlen and Pézard (1992), for example, report that 
the practice of mental mathematics can enable students to develop new and economical ways of 
solving arithmetic problems that traditional paper-and-pencil contexts rarely afford, because the latter 
are often focused on techniques that are too time-consuming for a mental mathematics context. These 
economical ways of solving are said to have the potential to open varied and alternative mathematical 
routes for handling the concepts under study (e.g., Alain, 1932; Murphy, 2004; Plunkett, 1979; Reys 
& Nohda, 1994; see also Proulx, 2019). Thus the central objectives of this research on mental 
mathematics is to inquire into the nature of the mathematical activities (strategies, ways of solving, 
ideas, reasoning, etc.) that students engage in to solve these tasks. 

This said, as these mental mathematics sessions were conducted in classrooms, it became quite 
apparent that much more than strategies and solutions was happening in these sessions. In effect, the 
answers given by students and the strategy shared to arrive at them becomes some kind of natural 
occasion for other students to question or comment them, if they are not convinced or do not 
understand them. This leads to numerous interactions between students and the Principal Investigator 
(PI) (and the regular classroom teacher), where students ask important questions about the 
mathematics at play, which in turn would often lead students to engage in subsequent investigations 
about these issues (through questions, discussions, follow-up explorations, etc.; see also Cobb et al., 
1994, on this). In addition, the sharing of numerous strategies leads invariably to discussions about 
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these strategies, where the various strategies and their answers are compared and discussed by the PI 
and students concerning their effectiveness, links, (dis-)advantages, possible extensions to other 
tasks, and so forth. Even if from the outset this was not the scientific objective of the research, this 
phenomenon became intriguing. And from a didactique des mathématiques orientation, some 
attention was given to how all this was contributing to the advancement of mathematics with 
students. 

Advancement of mathematics: content and practices 
The advancement of mathematics can be addressed along two dimensions. The first is relative to the 

advancement of mathematical content. Mathematics is filed with content, from number to geometry 
and algebra, to name a few, through various algorithms, formulas, procedures, methods, definitions, 
theories and theorems about them. Analyses of the advancement of content in classrooms focuses on 
the development of this content with students, that is, on their understandings and reasoning relative 
to this mathematical content. Having said this, as Papert’s above quote insists, mathematics is not 
only about its content; it is an activity that is done and takes shape in action (see also Brown & 
Walter, 2005; Hersh, 2014; Lockhart, 2009; Schoenfeld, 2020). Mathematics is about doing 
mathematics; mathematics is a practice. Another dimension thus concerns mathematical practices. 
This second dimension of the advancement of mathematics in classrooms is about the development 
of mathematical practices in students, that is, how these emerge, unfold, progress, and so forth, as 
mathematics is being explored and produced. 

In other words, mathematics is composed of content and practices, where this mathematical content 
is explored and engaged with. Intertwined with the advancement of content, the emergence and 
development of mathematical practices thus acts as a fundamental dimension to consider in relation 
to mathematics. It is also along these lines that Lampert (1990a) raises the relevance of working on a 
double agenda, that is, simultaneously on of and about mathematics: 

This meant that I needed to work on two teaching agendas simultaneously. One agenda was 
related to the goal of students’ acquiring technical skills and knowledge in the discipline, 
which could be called knowledge of mathematics, or mathematical content. The other 
agenda, of course, was working toward the goal of students’ acquiring the skills and 
disposition necessary to participate in disciplinary discourses, which could be called 
knowledge about mathematics, or mathematical practice. (p. 44) 

Both these dimensions of content and practices have been salient in the mental mathematics 
sessions conducted. This research, strongly grounded in Papert’s work (e.g. 1972, 1980, 1993, 1996; 
see also Barabé & Proulx, 2017), compelled investigations of mathematical practices. Papert is 
indeed quite adamant on the importance of the development of mathematical practices, where 
mathematics is not something given and fixed, but is alive and a source of ongoing investigations in 
order to enrich students’ experiences and culture in mathematics (see, e.g., 1993, 1996). This idea 
also relates to Bauersfeld’s (1995, 1998) notion of plunging students into a “culture of 
mathematizing”, where mathematical practices unfold and take shape through interactions and 
investigations. 

Participants in a culture of mathematizing are seen as authors and producers of mathematical 
knowledge, understandings and meanings. In the establishment and development of such a culture, 
where mathematical practices unfold and concepts and methods are explored and worked on, 
students are encouraged to generate ideas, questions and problems, to make explicit and share 
understandings and solutions, to develop explanations and argumentations to support the solutions 
and strategies put forth, to negotiate proposed meanings, to share and explore various ways of 
understanding problems, concepts, symbolism, and representations, and to assess and validate other’s 
understandings and ways of doing (see e.g. Bartolini Bussi, 1998; Bednarz, 1998; Borasi, 1992, 
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1996; Brown & Walter, 2005; Cobb & Yackel, 1998; Lampert, 1990a; Schoenfeld, 2020; Voigt, 
1985, 1994). From these practices, a number of elements can be outlined to characterize and analyze 
the advancement of mathematics. 

• The emergence of a community of validation. Central to a mathematics-producing practice are 
participants who are engaged in explaining, discussing, arguing, and validating mathematical 
understandings and meanings (Boaler, 1999; Borasi, 1992; Hersh, 1997; Krummheuer, 1995; 
Lakatos, 1976; Lampert, 1990a). 

• The role, relevance and development of mathematical languages, symbolisms and conventions. 
Mathematical symbolism, languages and conventions, and their development, are used to 
express mathematical understandings, explanations, arguments, etc., and play a major role in 
the emergence of mathematics and mathematical thinking (Bednarz et al., 1993; Byers & 
Erlwanger, 1984; Byers & Herscovics, 1977; Lampert, 1990b; Lockhart, 2017). 

• The role given to errors and how they are handled. Errors play and have played a fundamental 
role in the emergence of mathematical thinking and understanding. The way they have been 
handled has enable new ways of seeing and understanding mathematics, leading to unpredicted 
or as yet not thought of avenues (Borasi, 1996; Hadamard, 1945). 

• The solving and posing of problems. Doing mathematics is an activity of posing and solving 
problems of many kinds (Bkouche, Charlot & Rouche, 1992; Brown & Walter, 2005; Hersh, 
1997; Lang, 1985; Polya, 1945), where explorations of mathematical content have contributed 
to the development of additional mathematical content. 

• The authorship, ownership and responsibility in mathematics. Doing mathematics imposes an 
active engagement. People doing mathematics do not conceive of themselves as mere 
consumers or receivers of mathematics, but as producers and even authors of mathematics 
(Papert, 1996; Povey & Burton, 1999; Schoenfeld, 1994). Mathematics confers a double sense 
of responsibilities (Borasi, 1992, 1996), where people doing mathematics are responsible for 
the mathematics they produce and also responsible for producing mathematics. 

As scientific interest arose about these dimensions relative to the advancement of mathematics in 
the mental mathematics sessions conducted, the following question oriented the inquiry: In what 
ways is mathematics advancing in the mental mathematics sessions, under both its mathematical 
content and practices dimensions? As a way of showing how the advancement of mathematics 
happened in the sessions, an extract taken from one session is presented. This extract is then looked 
into in relation to how mathematics content and practices advance, as a way of offering an initial 
illustration of what it can mean to analyze the advancement of mathematics in these mental 
mathematics sessions. 

Extract from a mental mathematics session 
The extract is taken from a session led by the PI in a Grade-10 classroom of about 30 students, who 

were working on analytical geometry in relation to distances (points, midpoints, lines, etc.) and had 
been initiated to usual algebraic formulas. One of the tasks given to students was “Find the distance 
between (0,0) and (4,3) in the plane” (given orally, with points drawn on a Cartesian plane on the 
front board); they had 15 seconds to answer without recourse to paper and pencil or any other 
material. When time was up, students were invited to share and justify their solutions to the group. 
The following is a synthesis of the strategies engaged in and the discussions, questions, and 
explorations that ensued. 

The first strategy referred to applying the usual distance formula (D= (!! − !!)! + (!! − !!)!), 
leading to 5 as a distance. A second strategy suggested drawing a triangle in the plane, with sides 3 
and 4, for then finding the hypotenuse by using Pythagoras (Figure 1a). 
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Figure 1a – Drawing the right triangle  Figure 1b – Close-up on the triangle 

Another student then suggested a third strategy, coming to the board to trace a red segment to count 
directly on it from (0,0) to (4,3) as in Figure 1b. Starting from (0,0), she counted “the number of 
points” to arrive at (4,3), counting the number of whole-number coordinate points from (0,0) to (4,3). 
While doing this at the board, she suddenly stopped and mentioned that her red segment did not go 
through the points she envisaged, which made the counting difficult. The PI then traced another 
segment going through square diagonals linking two separate points, which could enable counting 
the number of (whole-number) coordinate points from one point to the next (giving 4 as a distance, 
Figure 2). The student agreed that for this case, it would work. 

 
Figure 2 – Line drawn through square diagonals 

The PI then asked if the measure obtained with square diagonal lengths was identical to that 
obtained with the side of the square (drawing  on the board). 

One student asserted that both lengths were not identical, because the diagonal of the square 
was not of the same length as the square’s side. Another explained that both lengths were 
different, because the hypotenuse is always the longer side in a triangle. Finally, a student 
claimed that the diagonal was longer because it faces the wider angle. 

The PI then asked if that last assertion about facing the wider angle was always true, and if so why 
(drawing on the board a random right triangle ). 

One student, pointing at the triangle, stated that it was indeed the case in this drawn triangle. 
Another student explained that in a triangle the bigger the angle the longer the opposite side, 
mentioning that if the side-hypotenuse had been longer, the opposite angle would have been 
wider. And, because the sum of the (measures of the) angles in a triangle is 180o, then the 90o 
angle is always the wider one, the other 90o being shared between the remaining two angles. 

Using the drawing of the triangle, the PI simulated the variation of the right angle toward an obtuse 
one and traced the resulting side obtained, showing how it would become longer (drawing  on 
the board). He then moved it toward producing an acute angle, asking students if their “theory” about 
opposite side of the angle worked for any angle, like acute ones. 

One student asserted that it works for isosceles triangles, with equal sides facing equal 
angles, and another mentioned that it is the same for the equilateral triangle, because it is 
“everywhere the same” with same angles and same side lengths. 

The PI explained that these ideas about the diagonals being longer than the side underlined the fact 
that this initial strategy amounted to counting diagonals, that is, the number of diagonals of a unit 
square. And, that this offered a different sort of measure for the (same) distance between the two 
points: one in terms of units and one in terms of diagonals. A student added that if one knows the 
value of the diagonal (e.g. 1.2 or else), then one could find the number of unit squares for the 
diagonal-segment by multiplying by that factor.  

One student offered a fourth strategy to find the distance, suggesting using the sine law with angles 
of 45o. The PI asked the student how he knew that both angles were 45o in the triangle. As skepticism 
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grew in the classroom, the PI suggested that students inquire, in small groups or individually, if the 
triangle’s angle were 45o or not, and to be able to convince others. After 5-6 minutes of exploration, 
students were invited to share their findings.  

One student explained that on her exam checklist there is an isosceles right triangle with 45o 
angles. Thus with this triangle of side length of 4 and 3, one cannot directly assert that it is 
45o because it is not an isosceles triangle as its sides are not equal. Another student 
illustrated on the board that if one “completes” the initial triangle into a rectangle  
( , see Figure 3a), then the hypotenuses of both triangles are the rectangle’s diagonal 
which cuts it in two equal parts and thus cuts its angle in two equal 45o parts. 

As the PI highlighted that the two arguments were opposed, one student replied not agreeing with 
the last argument, drawing on the board a random rectangle with its diagonal (Figure 3b), and 
asserting that in this rectangle it was not certain that the angle was divided into two equal parts. 
Another student added that because the sides of the triangle were not identical (of 3 and 4), then the 
diagonal would not necessarily cut the 90o angle in two equal parts of 45o. 

         
Figure 3a – The “completed” rectangle  Figure 3b – The “counter” rectangle 

The PI highlighted that this last argument reused aspects of the precedent “theory” that the longer 
side faces the wider angle in the triangle. Hence, following this, a longer side needed to face a wider 
angle. Then a counter-example was offered to the group. 

The student who made reference to the checklist asserted that sometimes in their exams right 
triangles did not have 45o angles, for example, one with 32o and 58o; coming to the board to 
draw it (Figure 4). She completed her drawing to create a rectangle, explaining that the 
diagonal cuts as well this rectangle in two parts, but that the angles obtained are not of 45o. 

 
Figure 4 – The triangle counter-example with angles of 32o and 58o, and the rectangle 

The PI asserted that this offered a counter-example, with a type of right triangle frequently met that 
did not have angles of 45o. 

One student added that because all sides were different, then their associated angles would 
be different, the longer side needed to face a wider angle, which would lead to different 
angles. 

The PI then highlighted the work of one student who drew a square in his notebook to assess the 45o 
situation. Drawing a triangle of sides 3-4-5, he extended the cathetus of 3 toward one of 4 to create a 
4x4 square. Then, because in the previous unit-square the angles were of 45o, in this 4x4 they were 
45o as well (Figure 5). Comparing hypotenuses of both triangles, it illustrated that in the initial 3-4-5 
right triangle, the angle is smaller than the right triangle of side 4 and 4. All this led students to 
appear to agree that the angle was not 45o, ending the explorations (and leading the PI to offer 
another task for the students to solve). 
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Figure 5 – Comparing triangles within a square 

Analysis of the advancement of mathematics 
A didactique des mathématiques analysis of this extract in relation to the advancement of 

mathematics underlines issues of mathematical content and of mathematical practices. First, 
mathematical content is significantly present in this extract through the explorations undertaken. 
Some mathematical content is engaged with more superficially or in an isolated way, without 
requiring subsequent exploring and mostly being referred to: Pythagoras’ relation, distance formula, 
hypothenuse, angles (acute, obtuse, right), triangles (various types, and isosceles and equilateral). 
These are not explored in depth, but are mobilized during the session and play an important part in it. 
Other mathematics content takes a more important place, enabling or representing some 
mathematical advances in the session through deeper explorations than the former: the sum of the 
measures of the angles of a triangle is 180o, the possibility of having two different measures for the 
same distance, the relationship between the rectangle’s diagonal, and the bisector of its angles. 
Finally, some content appears at the heart of the explorations in the session, thought of and 
recurrently being engaged with by students: the difference between the (measure of the) square 
diagonal and (the measure of) its side, and the relation between and variation of one side of the 
triangle and its opposite angle. There would obviously be more to outline, and along much subtler 
lines, but what is significant is the magnitude of the mathematical content worked on, mobilized, and 
continually explored with the students. 

Second, students are enacting a variety mathematical practices, which participate in the 
environment where the mathematical content is taking shape. In sum, the mathematical contents 
engaged with in the session are grounded in these mathematical practices: 

• The emergence of a community of validation. The investigation of the 45o angle is an example 
of how a community of validation was established, in which students offered conjectures, 
argued and counter-argued on the ideas suggested, justified their claim, developed elements to 
prove it, engaged in reflections to establish what works and does not, and why, etc. The 
mathematical “truths” were not passively received from outside, from an external authority, but 
were debated and worked on to develop consensus. 

• The role, relevance and development of mathematical languages, symbolisms and conventions. 
Although complex to analyse from a short extract, it is possible to seize some of the 
symbolisms and representations that took shape in it. For example, the manner of drawing 
rectangles and triangles with a “cut” to argue about the value of their angles is representative of 
a strong symbolization that became established in the group, that evolved, and that was used 
throughout the session. Thus, from a triangle ( ), students were led to “complete” it to 
make a rectangle ( ), enabling them to discuss and explore what happens with the 
rectangle’s and triangle’s angles. It is this specific symbolic representation that is used in 
Figures 3b and 4 to argue and counter-argue about the rectangle’s diagonal and the division in 
half of the 90o angle. This “invented” representation to symbolize the relationship between 
rectangles and triangles regarding their angles contributed to the mathematical understandings, 
and was often reused by students in the session. 

• The role given to errors and how they are handled. Errors have played a productive role in the 
session, provoking additional questions and explorations. For example, the third strategy about 
measuring the distance between the points through the diagonal of the unit-square has 
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unleashed important questioning on the difference between the diagonal and the side of the 
square, and has led to the idea that it is possible to have different measures for the same 
distance. The suggestion that the triangle had a 45o angle also provoked the investigation about 
triangles’ angles and sides, as well as rectangles’ sides and diagonals. None of these assertions, 
even when erroneous, were criticized and all were taken seriously: they were respected as 
authentic mathematical productions and enabled deeper understandings of the mathematics at 
play. 

• The solving and posing of problems. Throughout the session, questions were asked and sub-
problems emerged, unpredicted and contingent on the ongoing explorations undertaken (e.g. 
diagonal of the unit-square; the 45o angle; the diagonal splitting the 90o angle into two equal 
parts). Students raised and engaged intensely in these questions and sub-problems. It is through 
these questions and problems that the main part, if not the entirety, of the mathematical content 
was explored and deepened. 

• The authorship, ownership and responsibility in mathematics. Students took an active part in 
the investigation through a number of mathematical assertions and proposals (through 
strategies, answers, questions, disagreement, explanations, etc.). In this sense, they took 
ownership of the ideas produced and were engaged in producing them. This double-
responsibility took place as students were not passive in the session, but contributed to it with 
their own ideas. As an example, students’ spontaneous use of the front board shows how they 
felt compelled to share their ideas and participate in the explorations to reach a consensus: they 
show ownership over this consensus and do not appear to wait for someone else to reach it for 
them, interacting with others and the PI, raising issues, arguing, questioning, responding, etc. 

Another mathematical practice also comes out of this extract, and one considered of significance in 
mathematics. It is related to what Papert (1980, 1993) calls theorizing. In the discussions about the 
difference between the measure of the diagonal and the side of the square, an important theory was 
suggested by students: the bigger side of the triangle faces its bigger angle. First, this theory was 
mainly an assertion, some sort of conjecture. But, after some questions raised by the PI (Does it work 
all the time? / What happens if the angle changes? / etc.), it was increasingly confirmed by and 
through students’ justifications. This theory was then used by others, and as much by the students 
than by the PI, to address the issues about the 45o angle: if the measure of one side of the triangle is 
not the same as another, then neither can be the opposite! Throughout the session, this theory took 
shape and strengthened, giving rise to a number of side assertions, in the form of corollaries, like the 
following:  

Corollary 1: In a triangle, the smallest angle is always opposed to the smallest side. 
Corollary 2: In a triangle, the smaller an angle is, the smaller its opposite side is. 
Corollary 3: In an isosceles triangle, both equal angles are opposed to both equal sides. 
Corollary 4: In an equilateral triangle, angles are the same, linked to sides of same length. 
Corollary 5: Since the sides are not equal, its angles are not equal either. 
Corollary 6: Since the sides are of different length, they opposed angles of different size. 

And the list could go on. Without always being stated explicitly, the arguments and explanations 
related to the initial theory, that justified it, underlined these ideas and strengthened them. This made 
the theory increasingly accepted by students and the PI, to the point of being used itself as an 
argument. It is in this sense that this theory, and its corollaries, became established during the 
session, and became “proven”. It can be seen as some kind of proof by use, which is shown to be 
truthful through its efficient functionality and recurrence (Hersh, 2014). The proof of the pudding is 
in the eating! The establishment of theories thus acts here as an additional mathematical practice 
being put forth in the session. 
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Concluding remarks 
The above analysis could be deepened and refined. However this sketch, albeit rapid, is significant: 

it illustrates how mathematics not only advanced in relation to its content, but also relative to its 
practices, and how both content and practices are intermingled in this advancement, going hand in 
hand, participating in the unfolding of the other. Content arises through mathematical practices, 
which in turn are geared toward specific contents. The need to talk about triangles and their angles as 
content gave rise to a specific symbolisation to represent it, which in turn helped to make sense of 
triangles, rectangle and their angles. The need to understand the 45o angle as content, and the 
skepticism that it caused, led the community of validation to take shape, helping in return to give 
stronger meaning to the 45o angle. The notion of the measure of the side of a square and its diagonal 
made emerge a question about their difference, becoming a sub-problem to inquire into, which led 
not only to understandings about their difference in the square, but also gave rise to the theory of the 
triangle’s angle and its relation to its opposite side. And the list could go on, for each dimension of 
mathematical practices outlined, each linked to aspects of mathematical content covered in the 
session. 

This extract is only a short glimpse into the nature of the work conducted regularly with groups like 
these in mental mathematics settings. As these mathematical practices continually unfolded, sessions 
after sessions and with different group of students, one cannot but be seized by how students plunged 
deeply into aspects at the heart of Bauersfeld’s (1995, 1998) culture of mathematizing. The 
mathematical ideas emerge, are alive and flow dynamically. The students are strongly engaged, 
compelled to contribute, enthusiastic in responding to one another and to the ideas shared, and so 
forth.  

However, above all, this was not staged nor planned. Mental mathematics sessions are usually 
designed to gather and then analyse students’ strategies about various mental mathematics tasks. But 
classrooms are what they are, and students are who they are: asking them to solve mental 
mathematics tasks made emerge lots of questioning from them, and between them, about the 
mathematics. The tasks then became springboards for inquiry or “seeds” for explorations (Borasi, 
1992, 1996; Schoenfeld, 2020), as opportunities for developing not only mathematical content but 
also mathematical practices. This is why the mental mathematics environment that students seem to 
be plunged into appeared to be worth reflecting on. 

Although Papert never profoundly developed this concept, one is compelled to wonder if this 
environment of exploration happening in the mental mathematics sessions could represent, at least a 
little, what he had in mind with his mathland. Here, for example, is one quote taken from The 
Children’s machine: 

It is thoroughly embedded in our culture that some of us have a head for figures while most 
don’t, and accordingly, most people think of themselves as not mathematically minded. But 
what do we say about children who have trouble learning French in American schools? 
Whatever the explanation of their difficult, one certainly cannot ascribe it to a lack of 
aptitude for French – we can be sure that most of these children would have learned French 
perfectly well had they been born and raised in France. […] In the same way, we have no 
better reason to suppose that these children who have trouble with math lack mathematical 
intelligence than to suppose that the others lack “French intelligence”. We are left with the 
question: What would happen if children who can’t do math grew up in a Mathland, a place 
that is to math what France is to French? […] while what happened in the regular math class 
was more like the learning math as a foreign language. […] In the math class, where 
knowledge is not used but simply piled up like the bricks forming a dead building, there is no 
room for significant experimenting. (Papert, 1993, p. 64) 
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However bold, asserting that the mental mathematics environment in which students are plunged, 
for which the Grade-10 extract is an illustration of, could be aligned with a form of mathland has a 
nice ring to it. And, this ring leads one to become attentive to the strength of the engagement and the 
richness of the explorations undertaken. It seems to orient the focus, as Papert insisted, on doing 
mathematics more than on knowing mathematics. In this sense, doing mental mathematics becomes 
more about inquiring than about knowing facts (see PME-NA research report in Proulx, 2014, 2015a; 
or others e.g. in Proulx 2013, 2015b, 2019).  

Although at first a curiosity, inquiring into the environment of the mental mathematics sessions 
seemed to help draw out both these content and practices dimensions, and their intertwinement in the 
advancement of mathematics in the sessions. And it might be where Papert’s mathland fits in well, 
that is, in an environment where mathematics grows as much in terms of content as in terms of 
practices. 
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